Светодиод
Содержание
- Устройство светодиодных ламп на 220в и типы диодов
- Типы светодиодов
- Способы сборки
- Устройство лампы на светодиодах
- Схема включения
- Технические характеристики и схема подключения светодиодов SMD 5050
- Основные характеристики
- Оригинальный datasheet LED SMD 5050
- Рекомендации по подключению
- Основные выводы
- Светодиодная лента SMD 5050, её особенности и разновидности
- Особенности и область применения
- Варианты исполнения
- Основные технические характеристики
- Расчёт мощности для выбора блока питания
- Надёжные производители
- Пару слов об изделиях с AliExpress
- Что такое светодиод (LED), типы, как работает, история, схема и характеристики
- Кто изобрел светодиод
- Характеристики светодиода (LED)
- Как работает светодиод
- Простая светодиодная схема
- Преимущества светодиодов
- Недостатки светодиодов:
- Что такое светодиод?
- Что делает светодиод идеальным?
- Что находится внутри светодиода?
- Светодиодная технология
- Инфракрасный диод — источник Невидимого света
- Фотодиод — Он может увидеть свет
- Лазерные диоды
- Krestonosec23 › Блог › светодиоды и общие сведения
Устройство светодиодных ламп на 220в и типы диодов
Устройство светодиодных ламп на 220в во многих случаях варьируется в зависимости от конструктивных особенностей, заложенных производителем.
Тем не менее, знание основных видов устройства позволяет самостоятельно определить причину неисправности осветительного прибора, а также выполнить некоторые несложные ремонтные работы своими руками.
Типы светодиодов
Рассмотрим, какие светодиоды используются в лампах. В настоящее время существует огромное количество подвидов и групп, которые являются типами светодиодных осветительных приборов, но к самым основным видам относятся следующие:
- Слаботочный сверх яркий источник и smd-светодиод. Такие варианты очень часто используются в качестве индикаторов. Светодиод может быть собран на одном кристалле без использования линзы или на нескольких кристаллах с применением общей линзы.
- COB-модуль квадратного или линейного исполнения с белым свечением, что делает такой тип популярным в прожекторах и фонарях, используемых в уличном освещении.
- Filаmеnt – стержневой вариант, достигающий в длину четверти метра и состоящий их очень большого количества кристаллов. Филаментный тип особенно популярен в производстве нитевидных светильников на 220В.
- Дисплейного типа OLED-светодиоды, отличающиеся очень характерным тонкопленочным и органическим строением.
Не менее популярны светодиоды, которые используются в изготовлении ДУ-пульта, а также ламп медицинского или косметического назначения.
Таким образом, вне зависимости от типовых особенностей, основные узлы светодиодной лампы представлены цокольной частью, встроенным драйвером или стабилизатором тока, корпусом-рассеивателем, а также непосредственно светоизлучающими диодами.
Способы сборки
На сегодняшний день практикуется несколько способов сборки осветительных элементов, благодаря чему создана определенная классификация современных светодиодов.
DIP
Вариант Duаl In-line Расkаgе – интересный, с точки зрения конструкции, но устаревающий вид, характеризующийся следующими размерами светодиодов:
- 0,3 см;
- 0,5 см;
- 0,8 см;
- 1,0 см.
Помимо размеров колбы, полупроводники заметно отличаются цветом и материалами, которые используются для изготовления, а также формой чипа. К числу основных достоинств такого типа светодиодов относятся незначительный нагрев и достойная яркость свечения.
Duаl In-linе Расkаgе выпускаются как в одноцветном, так и в RGB-варианте, а также обладают чаще всего очень характерной цилиндрической формой, и имеют встроенную выпуклую линзу.
«Пиранья»
Светодиоды, относящиеся к этой группе, характеризуются наилучшими световыми качествами по показателям светового потока. Конструктивная особенность представлена прямоугольной формой и наличием четырёх специальных пин-выводов. Выпускаются в красном, зеленом, синем и белом цвете.
Одним из основных отличий является возможность более «жесткой» фиксации на плате, а очень высокая тепловая проводимость обусловлена свинцовой подложкой.
Светодиодная лампа Пиранья Хамелеон (RGB)
Наличие свинца ставит под сомнение безопасность эксплуатации, но широкий диапазон рабочего температурного режима позволяет использовать высокие входные мощности, чем и обуславливается широкая популярность.
SMD-технология
SMD-светодиоды, известные также под названием Surfасе Моunting Dеviсе или «устройство, фиксируемое на поверхности», обладают мощностью на уровне 0,01-0,2Вт.
Особенностью SMD-светодиодов является наличие одного, двух или трёх современных кристаллов на керамических прямоугольных основах.
SMD-светодиоды покрываются индивидуально качественным слоем люминофора. Площадки с контактами и основа монтажной платы напрямую соединяются при помощи стандартного припоя.
К недостаткам такой современной технологии можно отнести низкие показатели ремонтопригодности конструкции, а также необходимость выполнять полную замену платы со всеми светодиодами при выходе из строя одного из них.
COB-технология
Современная технология изготовления светодиодных ламп под названием Сhiр Оn Воаrd, характеризуется фиксацией кристаллов на плате без корпуса и керамической подложи, и покрытие общим люминофором. Главным достоинством любых COB-осветителей является минимальная площадь свечения при повышенных показателях мощности.
Светодиодная лампа типа COB
Большая плотность размещения и наличие общего покрытия слоем люминофора, гарантирует наиболее равномерное свечение осветительного прибора.
Среди экономичных ламп сначала широко применялись люминесцентные, но сейчас все больше предпочтение отдается светодиодным лампам. Как подключить светодиодные лампы вместо люминесцентных – эта информация будет полезна для тех, кто решил заменить лампочки.
О том, как выбрать и установить трансформатор для светодиодной ленты, читайте .
Виды и способы подключения диммера для светодиодных ламп описаны .
Устройство лампы на светодиодах
В зависимости от назначения осветительного прибора и особенностей производственных линий фирмы-производителя, устройство светодиодной лампочки может иметь некоторые, достаточно ощутимые отличия, которые следует учитывать при выборе.
Устройство светодиодной лампы LED
Фирменные изделия
Конструкционными особенностями LED-ламп на 220В, которые выпускаются производителями с мировой известностью, является наличие следующих обязательных составляющих:
- светорассеивающей полусферы;
- чипов;
- алюминиевой печатной платы с пастой достаточной теплопроводности, что позволяет регулировать работоспособность чипов;
- радиаторов на основе анодированного сплава алюминия;
- драйвера, имеющего схему гальванически развязанного модулятора;
- полимерного основания цоколя в виде полиэтилентерефталат;
- цокольной части, имеющей никелевое покрытие.
Следует отметить, что драйвер обладает повышенной плотностью монтажа таких частей, как трансформатор импульсного типа, микросхемы и полярные конденсаторы, а также различные планарные элементы.
Диодные лампы на 220В принято считать максимально безопасными для эксплуатации в жилых помещениях, что обусловлено отсутствием стекла, которое может стать причиной травмы.
Низкокачественные китайские лампочки
Именно недостаточно высоким качеством и отсутствием целого ряда элементов, объясняется низкая стоимость светодиодных источников света, выпускаемых китайским производителем:
- отсутствие радиатора;
- отсутствие драйвера;
- наличие простого питающего блока в виде неполярного конденсатора;
- отсутствием надежной стабилизации выходного тока.
Питающей блок устанавливается в центральной части платы со световыми диодами. На одной стороне присутствует диодный мост и резисторы, а на другой – пара конденсаторов.
Процесс охлаждения в китайских источниках света осуществляется посредством точечных малоэффективных отверстий в корпусе, что и становится основной причиной частого перегорания кристаллов.
Светодиоды используются не только в стационарных приборах, но и в качестве автономных источников цвета. Светодиодный фонарь своими руками – рассмотрим порядок сборки конструкции.
Информация по изготовлению светодиодных светильников своими руками представлена .
Filаmеnt лампы
Конструктивной особенностью «филаментной лампы» является наличие основных составных частей, представленных:
- светодиодными стержнями;
- стеклянной колбой;
- металлической цокольной частью;
- платой драйвера.
В качестве дополнения можно рассматривать наличие основания цокольной части.
Таким образом, светодиодный филамент можно рассматривать как прямоугольный или круглый стержень из стекла с миниатюрными светодиодными кристаллами.
Нанесение на каждый элемент толстого силиконового слоя желтого люминофора помогает предотвратить прохождение ультрафиолетовых лучей, а также позволяет получить максимально равномерное рассеивание светового потока.
Схема включения
Как показывает практика, несмотря на достаточно высокую стоимость, общее потребление электрической энергии полупроводниковыми осветительными приборами, ощутимо ниже, чем у стандартных лампочек накаливания, а средний срок эксплуатации напротив, больше примерно в пять раз.
Монтажная схема светодиодной лампы
Схема включения такого источника света очень проста. Светодиодная лампа работает в условиях подачи 220В, в результате преобразования драйвером до рабочих величин входного сигнала, вызывающего свечение.
Технические характеристики и схема подключения светодиодов SMD 5050
Большинство ЛЕД светильников создано на базе элементов поверхностного монтажа, которые обозначаются аббревиатурой SMD (Surface Mounted Device). Они удобны, компактны, демонстрируют высокие эксплуатационные качества и могут быть установлены при помощи промышленных роботов. Первыми и наиболее удачными конструкциями стали SMD 5050, показавшие высокую эффективность (80 Лм/Вт) и ставшие базовыми компонентами для дальнейших разработок. В настоящее время эти элементы активно используются для производства светодиодных лент, различных ламп средней и высокой мощности, фонарей, прочих приборов.
Основные характеристики
Среди всех видов SMD LED, имеющихся в арсенале современных производителей, светодиод 5050 выделяется наиболее компактной конструкцией. Он представляет собой полупроводниковый прибор, излучающий свет под действием постоянного тока. В стандартном корпусе установлены три кристалла, действующие в связке и выдающие большой световой поток. Есть элементы монохромные, существуют т.н. RGB диоды, созданные из трех чипов разного цвета (Red Green Blue — Красный, Зеленый, Синий).
Материалами для создания чипов служат:
- алюминий;
- фосфор;
- галлий;
- индий.
В качестве легирующих добавок применяются соединения азота и других химических элементов. Эти материалы позволяют получать одно- и трехцветные светодиоды.
Для изготовления корпуса используется термоустойчивый пластик. Рассеиватель представлен линзой, которую заливают эпоксидной смолой. С нижней стороны размещены теплоотводы, обеспечивающие охлаждение кристаллов. Каждый элемент имеет по 6 контактов — 3 анода и 3 катода. Для простоты определения полярности на корпусе имеется косой срез, расположенный на стороне катодов. В заводских условиях используется групповой монтаж, для домашних мастеров удобнее пайка каждого компонента по отдельности. К особенностям элементов типа 5050 следует отнести:
- малая деградация, не превышающая 4 % на 3000 часов непрерывной работы;
- для корпуса использован специальный термостойкий полимер, способный выдерживать 250° в течение длительного времени;
- рабочая температура чипов достигает 110°.
Внимание! Рабочие параметры SMD 5050 в развернутом виде изложены в т.н. datasheet, подробном перечне технических характеристик и свойств светодиодов.
Оригинальный datasheet LED SMD 5050
LED 5050 — матрица из трех кристаллов, каждый из которых является базовым элементом 3528. В полный перечень параметров входят:
- технические характеристики;
- оптико-электронные показатели;
- диаграммы спектрального излучения, зависимости тока от напряжения, распределения и прочих особенностей светового потока.
Полный список параметров нужен только специалистам — исследователям и производителям. Для домашнего мастера вполне достаточно знать технические характеристики. В их число входят:
- прямой ток — 20 мА на каждый кристалл;
- импульсный ток — 100 мА на каждый чип;
- прямое напряжение — 3,2-3,4 В;
- рассеиваемая мощность — 70 мВт на каждом кристалле;
- угол рассеивания (половинной яркости) — 120°;
- температура на p-n переходе — 110°;
- рабочий диапазон температур — от -40° до +65°;
- допустимая температура при хранении элементов — от -55° до +100°;
- условия пайки — до 300° в течение 2 сек.
Три кристалла соединяются параллельно. Размер светодиода составляет 5 на 5 мм, поэтому расстояние между соседними контактами всего 0,7 мм. Это значительно упрощает процесс пайки и снижает время нагрева.
Срок службы SMD 5050 зависит от цвета и условий эксплуатации. Для белых компонентов он составит 50000 часов, синие и зеленые способны работать до 70000 часов. Самыми долговечными являются красные и желтые образцы, которые могут работать до 90000 часов. Необходимо учитывать, что эти показатели достигаются только в благоприятных условиях, близких к оптимуму. Гарантийный срок, установленный большинством производителей, составляет 2 года, что в пересчете на непрерывную работу составляет всего 17,5 тыс. часов.
Рекомендации по подключению
Подключение элементов СМД 5050 производится исходя из параметров питания. Важно обеспечить правильную полярность, иначе светодиоды работать не будут. Для выполнения процедуры потребуются некоторые навыки практических работ с паяльником, а также определенные теоретические познания. Надо выбрать правильную схему соединения и произвести качественный монтаж SMD 5050 на плату. Рассмотрим эти операции внимательнее:
Схема подключения
Напряжение питания одного SMD 5050 не превышает 3,5 В. Это означает, что, при последовательном соединении 3 компонентов, можно использовать стандартный 12 В источник питания. Для стабилизации и защиты от скачков необходимо установить токоограничивающий резистор. При этом, если использованы монохромные образцы, понадобится один резистор, а для трехцветных (RGB) устройств придется установить три резистора на каждую цветовую линию.
Важно! При такой схеме подключения достигается экономия на количестве резисторов, а также рациональнее расходуется энергия, которую они рассеивают. Однако, при выходе из строя одного SMD 5050 перестанет гореть вся цепочка из 3 штук.
Монтаж светодиодов типоразмера 5050
В промышленных условиях применяется технология групповой пайки. Специальный механизм устанавливает светодиоды на плату, покрытую специальной паяльной пастой. После этого плата подается в специальную печь, где паста под действием температуры распадается на флюс и припой. Флюс выполняет свою задачу и испаряется, а припой остается на контактах и дорожках платы, качественно соединяя элементы с подложкой.
В домашних условиях для монтажа SMD 5050 используют обычный паяльник или специальный строительный фен. Работа с феном напоминает заводскую технологию с использованием низкотемпературной паяльной пасты. Если применяется обычная пайка, нагрев инструмента не должен превышать 300°. Время контакта светодиода с паяльником не превышает 10 секунд. Это важно, поскольку перегрев кристалла способен вывести его из строя или значительно ухудшить его рабочие характеристики.
Основные выводы
Светодиоды SMD 5050 обладают высокими эксплуатационными показателями и техническими параметрами. Они используются в большинстве осветительных приборов, на базе элементов 5050 изготавливаются светодиодные ленты и прочие устройства. Преимуществами этих компонентов являются:
- технические характеристики демонстрируют высокую эффективность и увеличенные возможности;
- набор параметров позволяет применять SMD 5050 в светильниках средней и высокой мощности;
- срок службы этих устройств существенно превышает работоспособность всех альтернативных источников света;
- количество потребляемой электроэнергии позволяет объединять SMD 5050 в цепочки по 3 элемента, что снижает расход и не создает чрезмерных проблем при выходе из строя одного кристалла.
Светодиодная лента SMD 5050, её особенности и разновидности
С начала производства первой светодиодной ленты на SMD 5050 прошло более 10 лет. За это время рынок светодиодной продукции значительно расширился, появились более мощные аналоги. Тем не менее, спрос на LED-ленту на основе SMD светодиодов 5050 ничуть не снизился. Она по-прежнему востребована среди покупателей, во многом из-зи уникальных свойств и стабильной продолжительной работы.
Особенности и область применения
Уникальность светодиодной ленты этого типа заключается в особой технологии производства SMD 5050. На сегодняшний день SMD 5050 остаётся единственным широко применяемым компактным светодиодом для SMD монтажа, в корпусе которого расположены 3 отдельно управляемых светоизлучающих кристалла, что позволяет получить практически любой цвет свечения, а также управлять этим светом с помощью специального контроллера.
Чаще всего светодиодную ленту SMD 5050 применяют в качестве декоративной подсветки:
- для заполнения комнаты насыщенным синим, зелёным или красным светом, а также их оттенками;
- для создания светомузыкальных эффектов;
- в рекламных целях и шоу-бизнесе;
- в качестве новогоднего украшения.
Если же необходимо получить яркий белый свет, то лучше параллельно с ней приклеить ленту на мощных светодиодах SMD 5730.
Варианты исполнения
Светодиодные ленты, собранные на чипах SMD 5050, можно условно разделить на 3 вида: одноцветные, многоцветные и адресные.
Одноцветные (монохромные) ленты SMD 5050 собраны на основе трёх кристаллов, излучающих свет одного цвета. Если присмотреться к такой ленте, то можно увидеть, что в местах разреза присутствуют только 2 контакта для подключения «+» и «–». Мультицветные или RGB-ленты состоят из чипов с тремя кристаллами разных цветов (Red, Green, Blue) и в местах разреза имеют по 4 контактных площадки. Это даёт возможность пользователю задавать любой оттенок света при помощи RGB-контроллера. Недостатком RGB-лент является низкая мощность излучения при работе в режиме белого света. Избавиться от него удалось путём монтажа рядом с каждым RGB-светодиодом белого светодиода (RGBW-ленты). Причём управление белыми светодиодами производится по отдельной линии. В продаже также можно встретить вариант, когда в корпусе SMD 5050 в дополнение к RGB-кристаллам вмонтирован чип белого светодиода с отдельным управлением.
Приобрести RGB светодиодную ленту на основе LED SMD 5050 можно во многих интернет-магазинах. Наиболее достойным вариантом является интернет-магазин www.giant4.ru, который зарекомендовал себя как продавец качественного товара с невысоким ценником.
В адресной светодиодной ленте под корпусом SMD 5050 дополнительно с тремя излучающими кристаллами установлен чип ШИМ-драйвера WS2812B. В результате каждый адресный светодиод работает по индивидуальной команде, которую он получает от DMX-контроллера или Arduino. Столь оригинальное решение в значительной мере расширяет возможности RGB-светодиодов, но требует применения специализированного оборудования и программного обеспечения.
Основные технические характеристики
Чтобы понять, подойдёт ли данный тип LED-ленты для решения поставленных задач, необходимо узнать её параметры. Для этого предлагаем рассмотреть основные технические характеристики светодиодной ленты SMD 5050.
Напряжение питания
Значительная часть светодиодных лент рассчитана на работу от сети постоянного тока напряжением 12 В, что обусловлено несколькими факторами:
- +12 В – это стандарт, применяемый для многих видов аккумуляторов, включая автомобильные;
- +12 В позволяет запитать группу из 3-х последовательно включенных светодиодов любого цвета с минимальными потерями на ограничивающем резисторе;
- +12 В является наиболее безопасным напряжением для человека.
Светодиодная лента SMD 5050 на 12 В – это оптимальный вариант для конструирования подсветки в домашних условиях, т.к. для её подключения можно воспользоваться не только готовым блоком питания, но и блоком питания от компьютера или аккумулятором от ИБП.
Также в продаже можно найти светодиодные ленты SMD 5050 на 24 В и 36 В, подключаемые к соответствующему БП постоянного тока, и с питанием от сети переменного тока 220 В, подключаемые через диодный выпрямитель. Модели с таким напряжением не пользуются большой популярностью по разным причинам, в т.ч. из-за большой кратности резки. Для адресной ленты SMD 5050 напряжение питания составляет 5 В.
Степень защиты от влаги и пыли
Важным параметром при выборе светодиодной ленты является степень защиты от внешнего воздействия твёрдых предметов и воды (IPXX). Пренебрегать этим параметром нельзя, т.к. он влияет на стоимость и на способность изделия противостоять негативному влиянию внешних факторов в процессе эксплуатации. Как правило, внешняя оболочка светодиодных лент SMD 5050 имеет следующий класс защиты:
- IP20 – от твёрдых предметов диаметром более 12,5 мм и никак не препятствует попаданию воды. Такое изделие не имеет никакого покрытия и может применяться только внутри сухих помещений (гостиные, спальни, офисы).
- IP33 — от твёрдых предметов диаметром более 2,5 мм и от капель воды. В данном случае покрытие выполнено из тонкого слоя лака. Кроме сухих помещений, лента может применяться для подсветки кухни, где существует вероятность попадания на неё водяных капель.
- IP54 – с частичной защитой от пыли и брызг воды в виде силиконового слоя только со стороны элементов. Как и в предыдущем варианте, такая лента предназначена для оформления интерьера кухонь и прочих помещений с временно повышенной влажностью.
- IP65 – с полной защитой от пыли и струй воды. В данном случае защитный слой – это силиконовое покрытие со всех сторон. Светодиодная лента с IP выше 65 вполне подходит для уличной подсветки и ванных комнат.
- IP67 – выдерживает кратковременное нахождение под водой. Визуально от изделий с IP65 отличается типом оболочки (ПВХ профиль и силикон сверху). Она прекрасно подходит для авто- и вело- тюнинга.
- IP68 – наивысшая степень пыле и влагозащиты. Такая LED-лента размещена внутри ПВХ-трубки и способна длительно без повреждений выдерживать воздействие воды под давлением. Сфера её применения – украшение бассейнов и фонтанов.
Плотность светодиодов
Этот параметр указывает на количество светодиодов в одном погонном метре ленты и может принимать значения: 30, 60, 120 и 240 шт./м. Чем выше плотность монтажа, тем больше световой поток и мощность потребления светодиодной ленты SMD 5050. Чтобы не допустить деградации светодиодов, ленту с плотностью 120 и 240 светодиодов на метр необходимо клеить на алюминиевый профиль.
Иногда вместо плотности (шт./м.) на бобине можно увидеть надпись «количество – 300 шт.» Это значит, что производитель указал общее количество светодиодов в ленте длиной 5 метров. Соответственно плотность такой ленты стандартная – 60 шт./м.
Световой поток
Для монохромных и RGB светодиодных лент SMD 5050 результирующая величина светового потока зависит от цвета свечения. Известно, что глаз человека лучше всего воспринимает зелёный свет. Поэтому RGB лента, включённая в режиме зелёного света, кажется наиболее яркой. Также не стоит забывать о том, что световой поток LED-ленты «Эконом» класса примерно на 30% ниже, чем у «Премиум» класса. Причём существенная разница в качестве может наблюдаться даже у одного производителя. Например:
- Foton SMD5050-30led/m-RGB-IP20-Econom – 180 lm;
- Foton SMD5050-30led/m-RGB-IP20-Premium – 270 lm.
На световой поток белой светодиодной ленты SMD5050 влияет цветовая температура (оттенок). Для чипа SMD 5050 нейтрального света (4500-5500°K) нормой считается световой поток 18 лм; тёплого света (3000-4000°K) – 16 лм; холодного света (6000-7500°K) – 20 лм. Умножая данные значения на плотность, получим суммарное количество люмен, испускаемых одним метром светодиодной ленты.
Расчёт мощности для выбора блока питания
Залог надёжной работы любой светодиодной ленты – это правильно подобранный блок питания. Выбирать БП для одноцветной led-ленты на SMD 5050 следует по двум параметрам: выходному напряжению и мощности, которую он способен выдать в нагрузку. Выходное напряжение БП должно совпадать с напряжением питания светодиодной ленты. В большинстве случаев оно равно 12 В, реже 24 В. Мощность рассчитывается исходя из длины ленты и её плотности. Для облегчения расчётов существует специальная таблица, где указана мощность потребления 1 метра с учётом типа светодиодов и плотности монтажа. Касательно ленты на SMD 5050 имеем следующие данные:
- 30 led/m – 7,2 Вт;
- 60 led/m – 14,4 Вт;
- 120 led/m – 28,8 Вт;
- 240 led/m – 57,6 Вт.
Здесь значения мощности указаны для режима максимальной яркости. Это значит, что RGB-лента, работая в режиме одно цвета, будет потреблять энергии в 3 раза меньше, т.к. задействован будет только 1 из 3 кристаллов.
Мощность БП определим по формуле:
- P1м – мощность потребления одного метра, Вт;
- N – общая длина всех отрезков, подключаемых к БП, м;
- K – коэффициент запаса по мощности. Обычно К=1,2.
Для подключения RGB-светодиодной ленты на SMD 5050 кроме блока питания понадобится RGB-контроллер. Как правильно выбрать RGB-контроллер, в каких случаях нужен усилитель сигнала и какая схема подключения лучше? Ответы на эти вопросы можно найти в статье «Подключение RGB-лент разной длины».
Надёжные производители
Помимо технических характеристик не нужно забывать о качестве. Особенно если перед вами стоит задача собрать подсветку подвесного потолка. Лучше всего покупать светодиодную ленту таких брендов как Philips, Feron, Gauss. Однако ввиду дороговизны их продукция мало востребована. В связи с этим потенциальные покупатели вынуждены выбирать из того, что предлагает российский рынок. Здесь можно доверять светодиодным лентам SMD 5050 среднего ценового диапазона от Navigator, JazzWay, Foton, Lumex, Giant4, Horoz Electric, Arlight.
Пару слов об изделиях с AliExpress
Пытаясь сэкономить, многие потенциальные покупатели обращаются за поиском дешёвой продукции в AliExpress. При этом они забывают о том, что эта торговая площадка – лидер по сбыту низкокачественной продукции. И даже многочисленные положительные отзывы не гарантируют качество продукта и порядочность продавца. Практика показывает, что из-за грубого нарушения технологии и применения низкокачественных компонентов светодиодные ленты из Китая частично или полностью выходят из строя в первый год работы. Поэтому дешёвые led-ленты с AliExpress пригодны только для изготовления новогодних украшений и прочих самоделок.
Что такое светодиод (LED), типы, как работает, история, схема и характеристики
В статье узнаете что такое светодиод (LED), типы, как работает, история, схема и характеристики, преимущества и недостатки.
Светодиоды повсюду вокруг нас: в наших телефонах, наших автомобилях и даже в наших домах. Каждый раз, когда горит что-то электронное, есть большая вероятность, что за ним стоит светодиод. Они бывают самых разных размеров, форм и цветов, но независимо от того, как они выглядят, у них есть одна общая черта это самая популярная вещь в электроники. Огромный выбор светодиодов на ваш вкус и цвет вы можете приобрести на Алиэкспресс, нажав на кнопку ниже:
Светодиоды («LED») — это особый тип диодов, которые преобразуют электрическую энергию в свет. На самом деле, светодиод означает «светоизлучающий диод». И можно увидеть сходство на схеме диода и светодиода:
Короче говоря, светодиоды похожи на крошечные лампочки. Тем не менее, для сравнения светодиоды требуют гораздо меньше энергии. Они также более энергоэффективны, поэтому они не имеют тенденцию нагреваться, как обычные лампочки. Это делает их идеальным устройством для мобильных телефонов и других электронных приборов с низким энергопотреблением. Светодиоды высокой интенсивности нашли свое применение в акцентном освещении, прожекторах и даже автомобильных фарах!
Кто изобрел светодиод
Общая светодиодная технология существует уже более сорока лет. Первый светоизлучающий диод видимого спектра был изобретен в 1962 году Ником Холоняком-младшим, который в то время работал консультантом в General Electric.
Однако некоторые факторы не позволили технологии перейти к практическому использованию освещения. Стоимость была главной проблемой, первые светодиоды стоили более 200 долларов за диод. Другим ограничивающим фактором был цвет, до 70-х годов единственным цветом, который мог создавать светодиод, был красный. Еще одним фактором был световой поток, который в течение ряда лет ограничивал практическое использование светодиодов для визуальных сигналов, таких как световые индикаторы и знаки.
Использование светодиодов в лампочках является довольно недавним и продолжающимся развитием. Первые массовые установки светодиодного освещения произошли всего за последние несколько лет, и технология постоянно совершенствуется.
Характеристики светодиода (LED)
Перед подключением светодиода нужно знать несколько характеристик светодиода (на самом деле, они очень важны). Если вы обращаетесь к какой-либо спецификации, предоставленной производителем, вы можете найти множество технических характеристик, соответствующих электрическим характеристикам, номинальным характеристикам, физическим размерам и так далее.
Я не буду утомлять вас всеми характеристиками, а только важными. Это полярность, прямое напряжение и прямой ток.
Советуем вам видео ниже «Как узнать параметры любого светодиода»
Полярность LED
Полярность является показателем симметричности электронного компонента. Светоизлучающий диод, подобный диоду PN-перехода, не является симметричным, то есть он позволяет току течь только в одном направлении.
В светодиоде положительный вывод называется анодом, а отрицательный вывод — катодом. Для правильной работы светодиода анод светодиода должен иметь более высокий потенциал, чем катод, так как ток в светодиоде течет от анода к катоду.
Что произойдет, если мы подключим светодиод в обратном направлении? Ну, ничего не происходит, так как светодиод не будет проводить ток. Вы можете легко идентифицировать анодную клемму светодиода, поскольку они обычно имеют более длинные выводы.
Прямой ток светодиодов
Светодиоды являются очень чувствительными устройствами, и величина тока, протекающего через светодиод, очень важна. Кроме того, яркость светодиода зависит от величины тока, потребляемого светодиодом.
Каждый светодиод имеет максимальный прямой ток, который может безопасно проходить через него, не перегорая. Да, допустимый ток, превышающий номинальный ток, фактически подожжет светодиод.
Например, наиболее часто используемые 5-миллиметровые светодиоды имеют номинальный ток от 20 мА до 30 мА, а 8-миллиметровые светодиоды имеют номинальный ток 150 мА (точные значения приведены в техническом описании).
Как нам регулировать ток, протекающий через светодиод? Для контроля тока, протекающего через светодиод, мы используем резисторы с ограничением тока.
Прямое напряжение LED
Светоизлучающие диоды также рассчитаны на максимальное напряжение, то есть количество напряжения, которое необходимо для светодиода. Например, все 5-миллиметровые светодиоды имеют номинальный ток 20 мА, но прямое напряжение меняется от одного светодиода к другому.
Максимальное напряжение на красных светодиодах составляет 2,2 В, максимальное напряжение на синих светодиодах — 3,4 В, а на максимальном напряжении белых светодиодов — 3,6 В.
Как работает светодиод
Светодиод является двухпроводным полупроводниковым источником света. Это p-n переходной диод, который излучает свет при активации. Когда к выводам приложено подходящее напряжение, электроны могут рекомбинировать с электронными отверстиями внутри устройства, выделяя энергию в виде фотонов. Этот эффект называется электролюминесценцией, а цвет света (соответствующий энергии фотона) определяется энергетической шириной запрещенной зоны полупроводника.
Материал, используемый в светодиодах, в основном алюминий-галлий-арсенид (AlGaAs). В своем первоначальном состоянии атомы этого материала прочно связаны. Без свободных электронов проводимость электричества здесь становится невозможной.
При добавлении примеси, которая известна как легирование, вводятся дополнительные атомы, что эффективно нарушает баланс материала.
Эти примеси в виде дополнительных атомов способны либо обеспечивать свободные электроны (N-тип) в системе, либо высасывать некоторые из уже существующих электронов из атомов (P-тип), создавая «дыры» на атомных орбитах. В обоих случаях материал становится более проводящим. Таким образом, под воздействием электрического тока в материале N-типа электроны могут перемещаться от анода (положительный) к катоду (отрицательный) и наоборот в материале P-типа. Из-за свойства полупроводника ток никогда не будет идти в противоположных направлениях в соответствующих случаях.
Из приведенного выше объяснения ясно, что интенсивность света, излучаемого источником (в данном случае светодиодом), будет зависеть от уровня энергии испускаемых фотонов, который, в свою очередь, будет зависеть от энергии, выделяемой электронами, прыгающими между атомными орбитами из полупроводникового материала.
Мы знаем, что для того, чтобы заставить электрон выстрелить с более низкой орбиты на более высокую, его энергетический уровень необходимо поднять. И наоборот, если электроны вынуждены падать с более высоких на более низкие орбитали, логически энергия должна высвобождаться в процессе.
В светодиодах вышеуказанные явления хорошо используются. В ответ на P-тип легирования электроны в светодиодах движутся, падая с верхних орбиталей на нижние, высвобождая энергию в виде фотонов, то есть света. Чем дальше эти орбитали отстоят друг от друга, тем больше интенсивность излучаемого света.
Различные длины волн, вовлеченные в процесс, определяют различные цвета, производимые светодиодами. Следовательно, свет, излучаемый устройством, зависит от типа используемого полупроводникового материала.
Инфракрасный свет создается с использованием арсенида галлия (GaAs) в качестве полупроводника. Красный или желтый свет получают с использованием галлия-арсенида-фосфора (GaAsP) в качестве полупроводника. Красный или зеленый свет получается при использовании галлия-фосфора (GaP) в качестве полупроводника.
Простая светодиодная схема
На следующем рисунке показана схема простой светодиодной цепи, состоящей из 5-миллиметрового белого светодиода с источником питания 5 В.
Поскольку это белый светодиод, номинальные значения тока и напряжения следующие: типичный прямой ток составляет 20 мА, а типовое прямое напряжение составляет 2 В.
Поэтому для регулирования тока и напряжения мы использовали резистор 180 Ом.
- Сквозные светодиоды: они доступны в различных формах и размерах, и наиболее распространенными являются светодиоды 3 мм, 5 мм и 8 мм. Эти светодиоды доступны в различных цветах, таких как красный, синий, желтый, зеленый, белый и т. Д.
- Светодиоды SMD (светодиоды для поверхностного монтажа): Светодиоды для поверхностного монтажа представляют собой специальную упаковку, которую можно легко установить на печатную плату. Светодиоды SMD обычно различаются в зависимости от их физических размеров. Например, наиболее распространенными светодиодами SMD являются 3528 и 5050.
- Двухцветные светодиоды. Следующим типом светодиодов являются двухцветные светодиоды, как следует из названия, могут излучать два цвета. Двухцветные светодиоды имеют три контакта, обычно два анода и общий катод. В зависимости от конфигурации проводов, цвет будет активирован.
- Светодиод RGB (красный — синий — зеленый): светодиоды RGB являются самыми любимыми и популярными среди любителей и дизайнеров. Даже компьютерные сборки очень популярны для реализации светодиодов RGB в корпусах компьютеров, материнских платах, оперативной памяти и так далее.
- Светодиоды высокой мощности: Светодиод с номинальной мощностью, превышающей или равной 1 Вт, называется светодиодом высокой мощности. Это потому, что нормальные светодиоды имеют рассеиваемую мощность в несколько милливатт. Мощные светодиоды очень яркие и часто используются в фонариках, автомобильных фарах, прожекторах и так далее.
Преимущества светодиодов
- Для управления светодиодом достаточно очень низкого напряжения и тока. В диапазоне voltage- от 1 до 2 вольт. Ток — от 5 до 20 миллиампер.
- Общая выходная мощность будет менее 150 милливатт.
- Время отклика очень меньше — всего около 10 наносекунд.
- Устройство не требует нагрева и разогрева.
- Миниатюрный по размеру и, следовательно, легкий.
- Имеют прочную конструкцию и поэтому могут противостоять ударам и вибрациям.
- Срок службы светодиода составляет более 20 лет.
Недостатки светодиодов:
- Небольшое превышение напряжения или тока может повредить устройство.
- Известно, что устройство имеет более широкую полосу пропускания по сравнению с лазером.
- Температура зависит от выходной мощности излучения и длины волны.
>
Все о светодиодах. Как это работает?
Want create site? Find Free WordPress Themes and plugins.
Что такое светодиод?
Светодиоды образуют неотъемлемую часть в современной электроники, простые показатели для оптических коммуникационных устройств. Светоизлучающие диоды используют свойства р-п перехода и испускают фотоны, когда ток в прямом направлении. Светодиоды специально излучают свет, когда потенциалы приложены к аноду и катоду.
История светодиодов начинается с 1907 года, когда капитан Генри Джозефа наблюдал особенности электро-люминесценции карбида кремния. Первый светодиод был разработан в 1962 году. Он был разработан Холоньяк, работал в General Electric (GE). Это был GaAsP устройства. Первая коммерческая версия светодиодов пришли на рынок в 1960-х годов.
Изготовление светодиодной технологии произвела бум в 1970-е годы с введением арсенида галлия алюминия (GaAlAs). Эти светодиоды высокой яркости и во много раз ярче, чем старая рассеянного типа. Синие и белые светодиоды были введены в 1990 году, в котором используется индия нитрида галлия (InGaN) в качестве полупроводника. Белый светодиод содержит неорганический фосфор. Когда голубой свет внутри светодиода попадает на люминофор, он излучает белый свет.
Что делает светодиод идеальным?
Светодиоды широко используются в электронных схемах из-за его преимущества по сравнению с лампами. Некоторые важные особенностями являются:
- Светодиоды заключены в пластик, так что они могут выдерживать механические удары.
- В отличие от ламп, светодиоды не выделяют тепло и потери мощности при нагреве практически отсутствует.
- Светодиоды требуют очень низкий ток и напряжений обычно 20 мА при 1,8 вольта. Так что это идеально в схемах с батарейками.
Что находится внутри светодиода?
Внутри корпуса LED, есть две клеммы связаны маленький чип изготовлен из галлия соединения. Этот материал обладает свойством излучения фотонов при переходе P-N смещен в прямом. Различные цвета создаются выбиванием основного материала из другого веществама.
Внутри светодиода
Светодиодная технология
Яркость является важным аспектом LED. Глаз человека имеет максимальную чувствительность к свету около 550 нм в области желто — зеленой части видимого спектра. Именно поэтому зеленый светодиод излучается ярче, чем красный светодиод, хотя оба используют тот же ток. Важные параметры светодиодов являются:
- Световой поток
Указывает на энергии света, исходящего от светодиодов. Он измеряется в Люмен (лм) или Милли просвет (MLM) - Световая интенсивность
светового потока, охватывающий большую площадь является силой света.Он определяется как Кандела (кд) или милли Кандела (MCD) Яркость светодиода напрямую связана с его силой света. - Светоотдача
Это испускаемых относительной световой энергии к потребляемой мощности.Она измеряется в терминах люмен на ватт (лм Вт).
Прямой ток, прямое напряжение, угол обзора и скорость реагирования это факторы, влияющие на яркость и эффективность светодиодов. Прямой ток (I) является ток, протекающий через светодиод, когда он смещен в прямом направлении и он должен быть ограничен от 10 до 30 миллиампер, если выше то светодиоды будут уничтожены.
Угол обзора составляет от — угол оси, при котором световая интенсивность падения до половины осевого значения. Вот почему индикатор показывает больше яркости в полном объеме состоянии. Высокие яркие светодиоды имеют узкий угол обзора, так что свет фокусируется в пучок. Рабочее напряжение (V) является падение напряжения на светодиоде. Падение напряжения в диапазоне от 1,8 В до 2,6 вольт для обычных светодиодов, но в голубой и белый он будет идти до 5 вольт. Скорость отклика представляет, как быстро светодиод включается и выключается. Это очень важный фактор, если светодиоды используются в системах связи.
Требуется ли балластный резистор?
Светодиоды всегда подключены к источнику питания через резистор. Этот резистор называют «балластный резистор», которая защищает диод от повреждений, вызванных избыточным током. Он регулирует прямой тока на светодиод для безопасного предела и защищает ее от жжения.
Номинал резистора определяет прямой тока и, следовательно, яркость светодиодов. Простое уравнение Vs — Vf — используется для выбора резистора. Vs представляет входное напряжения цепи, Vf прямое падение напряжения светодиода(ов) при допустимом токе через светодиод. Полученное значение будет в Омах. Лучше ограничить ток до безопасного предела 20 мА.
Приведенная ниже таблица показывает прямое падение напряжения на светодиоде.
Красный | Оранжевый | Желтый | Зеленый | Синий | Белый |
---|---|---|---|---|---|
1,8 В | 2 V | 2,1 В | 2,2 В | 3,6 В | 3,6 В |
Через типичный светодиод может пройти 30 -40 мА безопасный ток через него .Номинальный ток, чтобы дать достаточную яркость, стандартный красный светодиод 20 мА. Но это может быть 40 мА для синего и белого светодиода. Ограничение тока балластным резистором защищает диод от избыточного тока, протекающего через него. Значение балластного резистора должны быть тщательно отобраны, чтобы предотвратить повреждение светодиодов, а также получить достаточную яркость при токе 20 мА. Следующее уравнение объясняет, как выбирать балластный резистор.
R = V / I
Где R — является значение сопротивления в Ом, V — является входное напряжение в цепи, и I — это допустимый ток через светодиод в амперах. Для типичного красного светодиода, прямое падение напряжения составляет 1,8 вольта. Таким образом, если напряжение питания 12 В (Vs), падение напряжения на светодиод 1,8 В (V) и допустимый ток составляет 20 мА (Если), то значение балластного резистора будет
Vs — Vf / Если = 12 — 1,8 / 20 мА = 10,2 / 0,02 = 510 Ом.
Но если 510 Ом резистор не доступен то можно подобрать ближайший, например 470 Ом резистор может быть использован даже если ток через светодиод слегка увеличивается. Но рекомендуется использовать 1 K резистор для увеличения срока службы светодиодов, хотя там будет небольшое снижение яркости.
Ниже готова арифметические для выбора ограничительного резистора для различных версий светодиодов при различных напряжениях.
Напряжение | Красный | Оранжевый | Желтый | Зеленый | Синий | Белый |
---|---|---|---|---|---|---|
12 V | 470 Ω | 470 Ω | 470 Ω | 470 Ω | 390 Ω | 390 Ω |
9 V | 330 Ω | 330 Ω | 330 Ω | 330 Ω | 270 Ω | 270 Ω |
6 V | 180 Ω | 180 Ω | 180 Ω | 180 Ω | 120 Ω | 120 Ω |
5 V | 180 Ω | 150 Ω | 150 Ω | 150 Ω | 68 Ω | 68 Ω |
3 V | 56 Ω | 47 Ω | 47 Ω | 33 Ω | — | — |
С добавлением других цветов
Светодиод, который может дать разные цвета полезно в некоторых приложениях. Например, светодиоды могут указывать на все системы OK, когда он становится зеленой, и неисправный, когда он становится красной. Светодиоды, которые могут производить два цвета называются Bicolour (Биколор) светодиодов.
Двухцветный светодиодный охватывает два светодиода (обычно красный и зеленый) в общем пакете. Два кристалла установлены на двух клеммах. Двухцветный светодиодный дает красный цвет, если ток проходит в одном направлении и становится зеленым, когда направление тока меняется на противоположное.
Триколор и многоцветные светодиоды , также доступны, которые имеют два или более кристаллов, заключенных в общий корпус. Трехцветный светодиодный имеет два анода для красного и зеленого кристалла и общим катодом. Таким образом, он излучает красный и зеленый цвета в зависимости от анода, в котором имеется ток. Если оба анода подключены, то светодиоды испускают свет и получается желтый цвет. Общий анод и отдельные светодиоды типа катода, также имеются.
Двухцветный индикатор светится разными цветами , начиная от зеленого через желтый, оранжевый и красный основной на ток, протекающий через их аноды, выбрав подходящий резистор для ограничения тока анода. Многоцветные светодиоды содержат более двух чипов, обычно красного, зеленого и синего чипы-в одном корпусе. Мигание разными цветами светодиодов, теперь доступны с двумя выводами. Это дает радугу цвета, которые являются весьма привлекательным.
Инфракрасный диод — источник Невидимого света
ИК диоды широко используются в удаленном управлении (пульт ДУ). Инфракрасные диоды на самом деле испускают нормальный свет с определенным цветом, который не чувствителен к человеческим глазом, потому что его длина волны 950 нм, ниже видимого спектра. Многие источники, такие как солнце, лампы, даже человеческое тело испускает инфракрасные лучи. Поэтому необходимо, чтобы модулировать излучение от ИК-диода, чтобы использовать его в электронном приложении, чтобы предотвратить ложное срабатывание. Модуляции делает сигнал от ИК-светодиода значительно выше чем шум. Инфракрасные диоды есть в корпусе, которые являются непрозрачным для видимого света, но прозрачна для инфракрасного. ИК-светодиоды широко используются в системах управления.
Инфракрасные диоды
Фотодиод — Он может увидеть свет
Фотодиод генерирует ток, когда его р-п перехода получает фотоны видимого или инфракрасного света. Основная работа фотодиода зависит от поглощения фотонов в полупроводниковом материале. Фото-генерируемых носителей разделены электрическим полем, и в результате фототок пропорционален падающему свету. Скорость, с которой носители движутся в области обеднения связана с силой электрического поля по всему региону и подвижность носителей.
Фотон, который поглощается полупроводником в области обеднения приведет к образованию электронно-дырочной проводимости. Дырки и электроны будут транспортироваться под действием электрического поля к краям области обеднения. После носителей покидают область истощения они идут к клеммам фотодиода, чтобы сформировать фото-ток во внешней цепи. Время отклика фотодиода, как правило, 250 наносекунд .
Фотодиоды
Лазерные диоды
Лазерный диод похож на обычные прозрачные светодиодные, но производит Laserwith высокой интенсивности. В лазерном луче число атомов вибрируют в такой цикле, что всё испускаемое излучение одной длины волны в фазе друг с другом. Лазерный свет является монохроматическим и проходит в виде узкого пучка. Луч типичных лазерных диодов составляет 4 мм х 0,6 мм, которая расширяется только до 120 мм на расстоянии 15 метров.
Лазерный диод может включаться и выключаться на более высоких частотах даже выше, чем 1 ГГц. Так что это весьма полезно в телекоммуникационных системах.Поскольку лазер генерирует тепло на поражение тканей тела, он используется в хирургии, чтобы исцелить поражения в очень чувствительных частей, как сетчатки, головного мозга и т.д. лазерные диоды являются важными компонентами в проигрывателях компакт-дисков, чтобы получить данные, записанные в компакт-дисках.
Лазерные Диоды
Krestonosec23 ›
Блог ›
светодиоды и общие сведения
Терминология русским языком
Последовательное включение радиодеталей — это когда детали соединены между собой только одной стороной, т.е. последовательно:
Параллельное включение радиодеталей — это когда детали соединены между собой в двух точках — в начале и в конце:
Напряжение — сила, с которой электричество «вдавливается» в провод, чтобы создать его ток.
Аналогична разности давления в начале и конце трубопровода, зависящей от силы насоса, загоняющего воду в трубу.
Измеряется в вольтах (В).
Ток — «количество электричества», проходящее по проводу в единицу времени.
Аналогичен количеству проходящей воды в трубе.
Измеряется в Амперах (А).
Сопротивление — сила, препятствующая прохождению электричества.
Аналогично сужению трубы, препятствующему свободному протоку воды.
Измеряется в омах (Ом).
Мощность — характеристика, отражающая способность, например, резистора без вреда для себя (перегрева или разрушения) пропускать электрический ток.
Аналогична толщине стенок места сужения трубы.
Постоянный ток — это когда электричество течёт постоянно в одну сторону, от плюса к минусу.
Это батарейки, аккумуляторы, ток после выпрямителей.
Аналогичен потоку воды, гоняемой насосом по закольцованной трубе в одну сторону.
Падение напряжения — разность потенциалов до и после детали, дающей сопротивление электрическому току, то есть напряжение, замеренное на контактах этой детали.
Аналогично разности давления воды, гоняемой насосом по кругу, до и после одного из сужений трубы.
Переменный ток — это когда электричество течёт то вперёд, то назад, меняя направление движения на противоположное с определённой частотой, например 50 раз в секунду.
Это электрическая сеть освещения, розетки. В них один провод (ноль) является общим, относительно которого а другом проводе (фазе) напряжение то положительное, то отрицательное. В результате при включении в розетку, например, электрочайника, ток в нём течёт то в одну, то в другую сторону.
Аналогичен движению воды, которую насос через трубу (фазу), опущенную сверху, то выдавливает в бак (ноль), то всасывает из него.
Частота переменного тока — число полных циклов (периодов) изменения направления тока (туда-обратно) за секунду.
Измеряется в герцах (Гц). Один период за секунду равен частоте в 1 герц.
Переменный ток имеет прямой и обратный (т.е. положительный и отрицательный) полупериод.
В Российских бытовых электросетях (в розетках и в лампочках) частота равна 50 герцам.
Важнейшие характеристики светодиодов:
1. Полярность.
Светодиод — это полупроводник. Он пропускает через себя ток только в одном направлении (также, как и обычный диод). В этот момент он и зажигается. Поэтому при подключении светодиода важна полярность его подключения. Если же светодиод подключается к переменному току (полярность которого меняется, например, 50 раз в секунду, как в розетке), то светодиод будет пропускать ток в одном полупериоде и не пропускать в другом, то есть быстро мигать, что, впрочем, практически незаметно для глаза.
Замечу, что при подключении светодиода к переменному току необходимо обезопасить его от действия напряжения обратного полупериода, поскольку максимально допустимое обратное напряжение большинства индикаторных светодиодов лежит в пределах единиц вольт. Для этого параллельно светодиоду но с обратной полярностью нужно включить любой кремниевый диод, который даст току течь в обратном направлении и организует на себе падение напряжения, не превышающее максимально допустимое обратное напряжение светодиода.
Минус (катод) светодиода обычно помечается небольшим спилом корпуса или более коротким выводом. При отсутствии указанных меток полярность можно определить и опытным путём, кратковременно подключая светодиод к питающему напряжению через соответствующий резистор. Однако это не самый удачный способ определения полярности. Кроме того, во избежание теплового пробоя светодиода или резкого сокращения срока его службы, нельзя определять полярность «методом тыка» без соответствующего резистора!
2. Напряжение питания и падение напряжения.
Напряжение питания — параметр для светодиода неприменимый. Нет у светодиодов такой характеристики, потому что нельзя подключать светодиоды к источнику питания напрямую. Главное, чтобы напряжение, от которого (через резистор) питается светодиод, было выше прямого падения напряжения светодиода (прямое падение напряжения указывается в характеристике вместо напряжения питания и у обычных индикаторных светодиодов колеблется в среднем от 1,8 до 3,6 вольт).
Напряжение питания не может являться характеристикой светодиода, поскольку для каждого экземпляра светодиода одного и того же номинала подходящее для него напряжение может быть разным. Включив несколько светодиодов одного и того же номинала параллельно, и подключив их к напряжению, например, 2 вольта, мы рискуем из-за разброса характеристик быстро спалить одни экземпляры и недосветить другие. Поэтому при подключении светодиода надо отслеживать не напряжение, а ток.
3. Ток.
Номинальный ток большинства индикаторных светодиодов соответствует либо 10, либо 20 миллиамперам (у зарубежных светодиодов чаще указывают 20 мА), и регулируется он индивидуально для каждого светодиода сопротивлением последовательно включенного резистора. Кроме того, мощность резистора не должна быть ниже расчётного уровня, иначе он может перегреться. Местоположение резистора (со стороны плюса светодиода или со стороны минуса) безразлично.
Поскольку светодиоду важно, чтобы его ток соответствовал номинальному, становится ясно, почему его нельзя подключать к напряжению питания напрямую. Если, например, при напряжении 1,9 вольта ток равен 20 миллиамперам, то при напряжении 2 вольта ток будет равен уже 30 миллиамперам. Напряжение изменилось всего на десятую часть вольта, а величина тока подскочила на 50% и существенно сократила жизнь светодиоду. А если включить в цепь последовательно со светодиодом даже приблизительно рассчитанный резистор, то он произведёт гораздо более тонкую регулировку тока.
Расчет ограничивающего ток резистора
Сопротивление резистора:
R = (Uпит. — Uпад.) / (I * 0,75)
— R — сопротивление резистора в омах.
— Uпит. — напряжение источника питания в вольтах.
— Uпад. -прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются.
— I — максимальный прямой ток светодиода в амперах (указывается в характернистиках и составляет обычно либо 10, либо 20 миллиамперам, т.е. 0,01 или 0,02 ампера). При последовательном соединении нескольких светодиодов прямой ток не увеличивается.
— 0,75 — коэффициент надёжности для светодиода.
Минимальная мощность резистора:
P = (Uпит. — Uпад.) ^ 2 / R
— P — мощность резистора в ваттах.
— Uпит. — действующее (эффективное, среднеквадратичное) напряжение источника питания в вольтах.
— Uпад. — прямое падение напряжения на светодиоде в вольтах (указывается в характеристиках и обычно находится в районе 2-х вольт). При последовательном включении нескольких светодиодов величины падений напряжений складываются. .
— R — сопротивление резистора в омах.
Ограничение обратного напряжения при подключении светодиода к переменному току
При подключении светодиода к переменному току необходимо ограничить влияние опасного для него напряжения обратного полупериода. У большинства светодиодов предельно допустимое обратное напряжение составляет всего около 2 вольт, а поскольку светодиод в обратном направлении заперт и ток по нему практически не течёт, то падение напряжения на нём становится полным, то есть равным напряжению питания. В результате на выводах диода оказывается полное напряжение питания обратного полупериода.
Для того, чтобы создать на светодиоде приемлимое падение напряжения для обратного полупериода, надо пропустить «через него» обратный ток. Для этого параллельно светодиоду, но с обратной полярностью, надо включить любой кремниевый диод (маркировка начинается на 2Д… или КД…), который рассчитан на прямой ток не менее того, что течёт в цепи (напр. 10 мА).
Диод пропустит проблемный полупериод и создаст на себе падение напряжения, являющегося обратным для светодиода. В результате обратное напряжение светодиода станет равным прямому падению напряжения диода (для кремниевых диодов это примерно в 0,5–0,7 В), что ниже ограничения большинства светодиодов в 2 вольта. Обратное же максимально допустимое напряжение для диода значительно выше 2 вольт, и в свою очередь с успехом снижается прямым падением напряжения светодиода. В результате все довольны.
Исходя из соображения экономии места, предпочтение следует отдать малогабаритным диодам (например, диоду КД522Б, который используется, кстати, в сетевых фильтрах «Пилот» именно для этой цели). Вместо кремниевого диода можно также поставить второй светодиод с аналогичным или более высоким максимальным прямым током, но при условии, что для обоих светодиодов падение напряжения одного светодиода не будет превышать максимально допустимое обратное напряжение другого.
Примечание: Некоторые радиолюбители не защищают светодиод от обратного напряжения, аргументируя это тем, что светодиод и так не перегорает. Тем не менее такой режим опасен. При обратном напряжении свыше указанного в характеристиках светодиода (обычно 2 В) при каждом обратном полупериоде в результате воздействия сильного электрического поля в р-n-переходе, происходит электрический пробой светодиода и через него проходит ток в обратном направлении.
Сам по себе электрический пробой обратим, т. е. он не приводит к повреждению диода, и при снижении обратного напряжения свойства диода восстанавливаются. Для стабилитронов, например, это вообще рабочий режим. Тем не менее этот дополнительный ток, хоть он и ограничен резистором, может вызвать перегрев р-n-перехода светодиода, в результате чего произойдёт необратимый тепловой пробой и дальнейшее разрушение кристалла. Поэтому не стоит лениться ставить шунтирующий диод. Тем более для этого подходит практически любой кремниевый диод, поскольку у них (в отличие от германиевых) малый обратный ток, а следовательно он не будет забирать его на себя, снижая яркость шунтируемого светодиода.
Наиболее распространённые ошибки при подключении светодиодов
1. Подключение светодиода напрямую к источнику питания без ограничителя тока (резистора или специальной микросхемы-драйвера). Обсуждалось выше. Светодиод быстро выходит из строя из-за плохо контролируемой величины тока.
2. Подключение параллельно включенных светодиодов к общему резистору. Во-первых, из-за возможного разброса параметров, светодиоды будут гореть с разной яркостью. Во-вторых, что более существенно, при выходе из строя одного из светодиодов, ток второго возрастёт вдвое, и он может тоже сгореть. В случае использования одного резистора целесообразнее подключать светодиоды последовательно. Тогда при расчёте резистора ток оставляем прежним (напр. 10 мА), а прямое падение напряжения светодиодов складываем (напр. 1,8 В + 2,1 В = 3,9 В).
3. Включение последовательно светодиодов, рассчитанных на разный ток. В этом случае один из светодиодов будет либо работать на износ, либо тускло светиться — в зависимости от настройки тока ограничивающим резистором.
4. Установка резистора недостаточного сопротивления. В результате текущий через светодиод ток оказывается слишком большим. Поскольку часть энергии из-за дефектов кристаллической решётки превращается в тепло, то при завышенных токах его становится слишком много. Кристалл перегревается, в результате чего значительно снижается срок его службы. При ещё большем завышении тока из-за разогрева области p-n-перехода снижается внутренний квантовый выход, яркость светодиода падает (это особенно заметно у красных светодиодов) и кристалл начинает катастрофически разрушаться.
5. Подключение светодиода к сети переменного тока (напр. 220 В) без принятия мер по ограничению обратного напряжения. У большинства светодиодов предельно допустимое обратное напряжение составляет около 2 вольт, тогда как напряжение обратного полупериода при запертом светодиоде создаёт на нём падение напряжения, равное напряжению питания. Существует много различных схем, исключающих разрушающее воздействие обратного напряжение. Простейшая рассмотрена выше.
6. Установка резистора недостаточной мощности. В результате резистор сильно нагревается и начинает плавить изоляцию касающихся его проводов. Потом на нём обгорает краска, и в конце концов он разрушается под воздействием высокой температуры. Резистор может безболезненно рассеять не более той мощности, на которую он рассчитан.
Если нет нужного резистора
Нужное сопротивление ® и мощность (P) резистора можно получить, комбинируя в последовательно-параллельном порядке резисторы других номиналов и мощностей.
Формула сопротивления для последовательного соединения резисторов
R = R1 + R2
Формула сопротивления для параллельного соединения резисторов
— двух:
R = (R1 * R2) / (R1 + R2) или R = 1 / (1 / R1 + 1 / R2)
— неограниченного количества: