Какой коэффициент теплопроводности лучше
Содержание
- Рассчет теплопроводности стен: таблица теплосопротивления материалов
- Теплопроводность строительных материалов
- Что такое теплопроводность, какими единицами измерения она описывается?
- Коэффициент теплопроводности материала
- Сопротивление теплопередаче
- Таблицы коэффициентов теплопроводности различных групп строительных материалов
- Таблица коэффициентов теплопроводности кирпичных кладок и каменных облицовок стен
- Таблица коэффициентов теплопроводности бетонов различного типа
- Таблица коэффициентов теплопроводности строительных растворов на цементной, известковой, гипсовой основе
- Таблица коэффициентов теплопроводности дерева, изделий на основе древесины, а также других природных материалов
- Таблица коэффициентов теплопроводности материалов, применяемых в термоизоляционных целях
- Таблица коэффициентов теплопроводности кровельных, гидроизоляционных, облицовочных, рулонных и наливных напольных покрытий
- Таблица коэффициентов теплопроводности металлов и стекла
- Для чего используются такие расчеты в практическом приложении?
- Применение материалов с небольшой теплопроводностью в утеплении домов
- Коэффициент теплопроводности строительных материалов: что означает показатель + таблица значений
- Что такое КТП строительного материала?
- Таблица теплопроводности стройматериалов
- Выводы и полезное видео по теме
Рассчет теплопроводности стен: таблица теплосопротивления материалов
Во многих случаях при выборе материала для строительства дома мы не вникаем, каково теплосопротивление строительных материалов, а полагаемся на «народные» методики. Самые популярные из них: «как у соседа», «как раньше», «смотри, какой толстый слой», и – венец искусства – «вроде, должно быть нормально». Что ж, ваш дом – вам и решать, какому методу отдать предпочтение. Но чтобы точно ответить на вопрос, достаточно ли тепло будет в вашем доме зимой (и достаточно ли прохладно в летний зной), нужно знать теплосопротивление стены. Откуда его можно узнать, как считать теплопроводность стены и как это поможет при ответе на ваш вопрос? Давайте разберемся по порядку.
Итак, немного теории, чтобы определиться с терминами и понять, как рассчитать теплосопротивление стены.
Если внутри тела имеется разность температур, то тепловая энергия переходит от более горячей его части к более холодной. Такой вид теплопередачи, обусловленный тепловыми движениями и столкновениями молекул, называется теплопроводностью.
Итак, теплопроводность – это количественная оценка способности конкретного вещества проводить тепло.
Теплосопротивление – величина обратная теплопроводности. (Хорошо проводит тепло – значит, слабо теплу сопротивляется. Следовательно, обладает высокой теплопроводностью и низким теплосопротивлением).
То есть, при строительстве лучше использовать материалы с низкой теплопроводностью (высоким теплосопротивлением) для лучшего сохранения тепла.
Как рассчитать теплопроводность стены?
Чтобы рассчитать теплосопротивление слоя нужно его толщину в метрах разделить на коэффициент теплосопротивления материалов, из которых он выполнен.
Как рассчитать коэффициент теплопроводности? Эти расчеты делаются в лабораторных условиях. Тем не менее, узнать его несложно: нормальный производитель всегда предоставляет эти данные, указан он и в СНиПе в разделе «Строительная теплотехника», правда, там представлены не все современные материалы. Если вы хотите знать теплосопротивление материалов, таблица с некоторыми из них представлена на данной странице.
Как пользоваться коэффициентом теплопроводности? В СНИПе указано два режима эксплуатации А и Б. Режим А подходит для сухих помещений (влажность меньше 50%) и для районов, удаленных от морских берегов. Для московского региона, например, подходит режим А. Таким образом, теплосопротивление стен по регионам может отличаться.
Теплосопротивление слоя = | толщина слоя (м) |
Коэффициент теплопроводности материала ( ) |
Теплосопротивление многослойной конструкции считается как сумма теплосопротивлений каждого слоя. (В случае с одним слоем все просто – его теплосопротивление и будет теплосопротивлением всей конструкции.)
Теплосопротивление конструкции = теплососпротивление слоя 1 + теплосоротивление слоя 2 + и т.д.
Единицы измерения теплосопротивления —
Рассмотрим, как рассчитать толщину стены по теплопроводности на конкретных примерах.
Пример 1
Стена толщиной в полтора кирпича, или, если перевести в международную систему измерения, 0,37 метра (37 сантиметров). Как посчитать теплопроводность стены?
Все, кто имел опыт работы с кирпичом, знают, что кирпич может быть разным. И коэффициент теплопроводности кирпичной кладки, соответственно, тоже разный. Кроме того, теплопроводность кирпичной стены на обычном цементно-песчаном растворе будет ниже, чем коэффициент отдельного кирпича. Как посчитать коэффициент теплопроводности стены в таком случае? Для расчетов будет правильно использовать именно значение для кладки.
(*из межгосударственного стандарта ГОСТ 530-2007)
Итак, мы убедились, что не все кирпичи одинаковы. И теплопроводность кирпичной кладки в зависимости от вида кирпича может отличаться в 2 раза. Ваш дом из какого кирпича? А мы рассмотрим самый лучший результат (плотность кирпичной кладки полтора керамических пустотелых кирпича). В данном случае теплосопротивление кирпича 1,06 . Запомним результат и перейдем к следующему примеру.
Пример 2
Допустим, мы хотим построить дачный домик из бруса сечением 15 см. Снаружи и изнутри отделаем вагонкой. Что получим? Коэффициент теплосопротивления дерева поперек волокон (данные из СНиПов) составляет 0,14 . Теперь делаем расчет теплосопротивления стены: толщину материала разделим на коэффициент теплопроводности.
Для бруса (это 0,15 м дерева) теплосопротивление составит (0,15/0,14) 1,07 .
Для вагонки (толщина 20 мм или 0,02 м) – 0,143 . Да, вагонка с двух сторон, значит 0.143 х 2 = 0,286 . Справедливости ради заметим, что на практике теплосопротивлением вагонки чаще всего пренебрегают, так как на стыках она имеет еще меньшую толщину, следовательно, меньшее теплосопротивление материала.
Запомним общее расчетное теплосопротивление стены из 15-исантиметрового бруса, обшитого изнутри и снаружи вагонкой, –
1,356 .
Чтобы не было необходимости делать расчёт теплосопротивления стены для каждого материала, в приведенной здесь таблице мы собрали данные по теплосопротивлению материалов, часто используемых при строительстве домов.
Таблица теплосопротивления материалов
Материал | Толщина материала (мм) |
Расчетное теплосо- противлениеа (м² * °С / Вт) |
Брус | 100 | 0,71 |
Брус | 150 | 1,07 |
Кладка из красного кирпича (плотность 1800 кг/м³) |
380 (полтора кирпича) |
0,53 |
Кладка из белого силикатного кирпича | 380 (полтора кирпича) |
0,44 |
Кладка из керамического пустотелого кирпича (плотность 1400 кг/м³) | 380 (полтора кирпича) |
0,76 |
Кладка из керамического пустотелого кирпича (плотность 1000 кг/м³) | 380 (полтора кирпича) |
1,06 |
Кладка из красного кирпича (плотность 1800 кг/м³) |
510 (два кирпича) |
0,72 |
Кладка из белого силикатного кирпича | 510 (два кирпича) |
0,6 |
Кладка из керамического пустотелого кирпича (плотность 1400 кг/м³) | 510 (два кирпича) |
1,04 |
Кладка из керамического пустотелого кирпича (плотность 1000 кг/м³) | 510 (два кирпича) |
1,46 |
Кладка на клей из газо- пенобетонных блоков (плотность 400 кг/м³) | 200 | 1,11 |
Кладка на клей из газо- пенобетонных блоков (плотность 600 кг/м³) | 200 | 0,69 |
Кладка на клей керамзитобетонных блоков на керамзитовом песке и керамзитобетоне (плотность 800 кг/м³) | 200 | 0,65 |
Теплоизоляционные материалы | ||
Плиты из каменной ваты ROCKWOOL ФАСАД БАТТС | 50 | 1,25 |
Ветрозащитные плиты Изоплат | 25 | 0,45 |
Теплозащитные плиты Изоплат | 12 | 0,27 |
Снова обратимся к СНиПам: теплосопротивление наружной стены, например, в Московской области должно быть не меньше 3 . Помните цифры, которые мы получили? В Российской Федерации нет районов, для которых эта величина составляла хотя бы 1,5 (не говоря уже о значениях еще ниже). Для сравнения приведем такие данные: в Германии эта норма определена не менее 3,4 , в Финляндии — не менее 5 (это, разумеется, уже не по нашим СНиПам, а по их регламентирующим документам).
Эти требования — для домов постоянного проживания. Если дом (как написано в СНиПах) предназначен для сезонного проживания, либо отапливается менее 5 дней в неделю, эти требования на него не распространяются.
Итак мы можем сделать вывод, что в домах со стенами в 1,5 кирпича, либо из бруса в 15 см проживать постоянно… нежелательно. Но ведь живем же! Да, только цена отопления 1 м³ из года в год становится все выше. Со временем все домовладельцы перейдут к эффективному утеплению домов — экономические соображения заставят заранее рассчитать теплопроводность стены и выбрать наилучшее техническое решение.
Теплопроводность строительных материалов
Ведущие тенденции современного строительства – это возведение домов с максимальной энергоэффективностью. То есть с возможностью создания и поддержания комфортных условий проживания при минимальных затратах энергоносителей. Понятно, что многим нашим строителям, ведущим возведение своих жилых владений самостоятельно, до таких показателей пока далековато, но стремиться к этому – необходимо всегда.
Теплопроводность строительных материалов
Прежде всего, это касается минимизации тепловых потерь через строительные конструкции. Достигается такое снижение эффективной термоизоляцией, выполненной на основании теплотехнических расчетов. Проектирование в идеале должны проводить специалисты, но часто обстоятельства понуждают владельцев жилья и такие вопросы брать в свои руки. Значит, необходимо иметь общие представления о базовых понятиях строительной теплотехники. Прежде всего – что такое теплопроводность строительных материалов, в чем она измеряется, как просчитывается.
Если разобраться с этими «азами», то будет проще всерьез, со знанием дела , а не по наитию, заниматься вопросами утепления своего жилья.
Что такое теплопроводность, какими единицами измерения она описывается?
Если не рассматривать каких-то теоретических условий, то в реальности все физические тела, жидкости или газы обладают способностью к передаче тепла. Иными словами, чтобы было понятнее, если какой-то объект начинают нагревать с одной из сторон, он становится проводником тепла, нагреваясь сам и передавая тепловую энергию дальше. Точно так же – и при охлаждении, только с «обратным знаком».
Даже на простом бытовом уровне всем понятно, что эта способность выражена у разных материалов в очень отличающейся степени. Например, одно дело мешать готовящееся на плите кипящее блюдо деревянной лопаткой, и совсем другое – металлической ложкой, которая практически моментально разогреется до такой температуры, что ее невозможно будет держать в руках. Этот пример наглядно показывает, что теплопроводность металла во много раз выше, чем у дерева.
«Практическое применение» огромной разницы в теплопроводности материалов – пробка, подсунутая под скобу металлической крышки кастрюли. Снять такую крышку с кипящей на плите посуды можно голыми пальцами, не опасаясь ожога.
И таких примеров – масса, буквально на каждом шагу. Например, прикоснитесь рукой к обычной деревянной двери в комнате, и к металлической ручке, прикрученной на ней. По ощущениям – ручка холоднее. Но такого не может быть – все предметы в помещении имеют примерно равную температуру. Просто металл ручки быстрее отвел на себя тепло тела, что и вызвало ощущения более холодной поверхности.
Коэффициент теплопроводности материала
Существует специальная единица, которая характеризует любой материал, как проводник тепла. Называется она коэффициентом теплопроводности, обозначается обычно греческой буквой λ, и измеряется в Вт/(м×℃). (Во многих встречающихся формулах вместо градусов Цельсия ℃ указаны градусы Кельвина, К, но сути это не меняет).
Этот коэффициент показывает способность материала передавать определенное количество тепла на определённое расстояние за единицу времени. Причем, это показатель характеризует именно материал, то есть без привязки к каким бы то ни было размерам.
Такие коэффициенты рассчитаны для практически любых строительных и иных материалов. Ниже в данной публикации приведены таблицы для различных групп – растворов, бетонов, кирпичной и каменной кладки, утеплителей, древесины, металлов и т.д. Даже беглого взгляда на них достаточно, чтобы убедиться, насколько эти коэффициенты могут отличаться.
Очень часто производители стройматериалов того или иного предназначения в череде паспортных характеристик указывают и коэффициент теплопроводности.
Материалы, которые отличаются высокой проводимостью тепла, например, металлы, как раз и находят часто применение в роли теплоотводов или теплообменников. Классический пример – радиаторы отопления, в которых чем лучше их стенки будут передавать нагрев от теплоносителя, тем эффективнее их работа.
А вот для большинства строительных материалов – ситуация обратная. То есть чем меньше коэффициент теплопроводности материала, из которого возведена условная стенка, тем меньше тепла будет терять здание с приходом холодов. Или, тем меньше можно будет сделать толщину стены при одинаковых показателях теплопроводности.
И на титульной картинке к статье, и на иллюстрации ниже показаны весьма наглядные схемы, как будет различаться толщина стены из разных материалов при равных способностях удержать тепло в доме. Комментарии, наверное, не нужны.
Одинаковая термоизоляционная способность – и совершенно разные толщины. Хороший пример по разнице в теплопроводности.
В справочной литературе часто указывается не одно значение коэффициента теплопроводности для какого-то материала, а целых три. (А иногда – и больше, так как этот коэффициент может меняться с изменением температуры). И это – правильно, так как на теплопроводные качества влияют и условия эксплуатации. И в первую очередь – влажность.
Это свойственно большинству материалов – при насыщении влагой коэффициент теплопроводности увеличивается. И если ставится цель выполнить расчеты максимально точно, с привязкой к реальным условиям эксплуатации, то рекомендуется не пренебрегать этой разницей.
Итак, коэффициент может даваться расчетный, то есть для совершенно сухого материала и лабораторных условий. Но для реальных расчетов берут его или для режима эксплуатации А, или для режима Б.
Эти режимы складываются консолидировано из климатических особенностей региона и из особенностей эксплуатации конкретного здания (помещения).
Тип своей климатической зоны по уровню влажности можно определить по предлагаемой карте-схеме:
Климатические зоны территории России по уровню влажности: 1 –влажная; 2 – нормальная; 3 – сухая.
Особенности влажностного режима помещений определяются по следующей таблице:
Таблица определения влажностного режима помещений
Влажностной режим помещения | Относительная влажность внутреннего воздуха при температуре: | ||
---|---|---|---|
до 12°С | от 13 до 24°С | 25°С и выше | |
Сухой | до 60% | до 50% | до 40% |
Нормальный | от 61 до 75% | от 51 до 60% | от 41 до 50% |
Влажный | 76% и более | от 61 до 75% | от 51 до 60% |
Мокрый | — | 76% и более | 61% и более |
А хорошо ли вы представляете себе, что такое относительная влажность воздуха. И какой она должна быть в помещениях для поддержания комфортного микроклимата? Если с этим ясности нет – добро пожаловать к специальной публикации нашего портала, посвященной приборам измерения относительной влажности.
Итак, имея данные карты-схемы и таблицы, можно по второй таблице определиться с выбором режима А или Б, от которого будет зависеть реальная величина коэффициента теплопроводности.
Таблица для выбора режима эксплуатации ограждающих конструкций
Влажностной режим помещения (по таблице) | Зоны влажности (в соотвествии с картой-схемой) | ||
---|---|---|---|
3 — сухая | 2 — нормальная | 1 — влажная | |
Сухой | А | А | Б |
Нормальный | А | Б | Б |
Влажный или мокрый | Б | Б | Б |
Вот по этому режиму и выбирается из табличных данных наиболее близкий к реальности коэффициент теплопроводности.
Таблицы будут приведены ниже, под теоретической частью.
Сопротивление теплопередаче
Итак, коэффициент теплопроводности характеризует сам материал. Но с практической точки зрения, наверное, важнее иметь какую-то величину, которая будет описывать теплопроводные способности конкретной конструкции. То есть уже с учетом особенностей ее строения и размеров.
Такая единица измерения есть, и называется она сопротивлением теплопередаче. Ее можно считать обратной величиной коэффициенту теплопроводности, с одновременным учетом толщины материала.
Обозначается сопротивление теплопередаче (или, как его часто именуют, термическое сопротивление) латинской буквой R. Если «плясать» от коэффициента теплопроводности, то определяется оно по следующей формуле.
R = h/λ
где:
R — сопротивление теплопередаче однослойной однородной ограждающей конструкции, м²×℃/Вт;
h — толщина этого слоя, выраженная в метрах;
λ — коэффициент теплопроводности материала, из которого изготовлена эта ограждающая конструкция, Вт/(м×℃).
Очень часто в строительстве используются многослойные конструкции. В том числе одним из слоев нередко выступает утеплительный материал с очень низким коэффициентом теплопроводности – специально, чтобы максимально повысить значение термического сопротивления. Дело в том, что общее значение суммируется из сопротивлений всех слоев, составляющих ограждающую конструкцию. И к ним добавляется сопротивление приграничных слоев воздуха на внешней и внутренней поверхностях конструкции.
Формула сопротивления перегородки с n-слоев будет такой:
Rsum = R₁ + R₂ + …+Rn + Rai + Rao
где:
Rsum— суммарное термическое сопротивление ограждающей конструкции;
R₁ … Rn— сопротивления слоев, от 1 до n;
Rai— сопротивление пристенного слоя воздуха внутри;
Rao— сопротивление пристенного слоя воздуха снаружи.
Для каждого из слоев сопротивление рассчитывается отдельно, исходя из коэффициента теплопроводности материала и толщины.
Есть специальная методика расчета и коэффициентов воздушных прослоек вдоль стены снаружи и внутри. Но для упрощенных расчётов их вполне можно взять равными суммарно 0,16 м²×℃/Вт – большой погрешности не будет.
Кстати, если в конструкции перегородки предусмотрена воздушная полость, не сообщающаяся с внешним воздухом, то она тоже дает весомую добавку к общему сопротивлению теплопередаче. Значения сопротивления теплопередаче воздушных изолированных прослоек показаны в таблице ниже:
Таблица термических сопротивлений замкнутых воздушных прослоек
Таблицы коэффициентов теплопроводности различных групп строительных материалов
Таблица коэффициентов теплопроводности кирпичных кладок и каменных облицовок стен
Наименование материала | ρ Средняя плотность материала кг/м³ |
λ₀ Коэффициент теплопроводности в идеальных условиях и в сухом состоянии Вт/(м×℃) |
λА Коэффициент теплопроводности для условий эксплуатации А Вт/(м×℃) |
λБ Коэффициент теплопроводности для условий эксплуатации Б Вт/(м×℃) |
---|---|---|---|---|
Кирпичная кладка из сплошного кирпича на различных растворах | ||||
Стандартный керамический (глиняный) – на цементно-песчаном кладочном растворе | 1800 | 0,56 | 0,70 | 0,81 |
Стандартный керамический на цементно-шлаковом растворе | 1700 | 0,52 | 0,64 | 0,76 |
Стандартный керамический на цементно-перлитовом растворе | 1600 | 0,47 | 0,58 | 0,70 |
Силикатный на цементно-песчаном кладочном растворе | 1800 | 0,70 | 0,76 | 0,87 |
Трепельный термооизоляционный, на цементно-песчаном кладочном растворе | 1200 | 0,35 | 0,47 | 0,52 |
— то же, но с плотностью | 1000 | 0,29 | 0,41 | 0,47 |
Шлаковый, на цементно-песчаном кладочном растворе | 1500 | 0,52 | 0,64 | 0,70 |
Кладка из пустотного кирпича | ||||
Кирпич керамический, с плотностью 1400 кг/м³, на цементно-песчаном кладочном растворе | 1600 | 0,47 | 0,58 | 0,64 |
— то же, но с плотностью кирпича 1300 кг/м³ | 1400 | 0,41 | 0,52 | 0,58 |
— то же, но с плотностью кирпича 1000 кг/м³ | 1200 | 0,35 | 0,47 | 0,52 |
Кирпич силикатный, одиннадцатипустотный, на цементно-песчаном кладочном растворе | 1500 | 0,64 | 0,70 | 0,81 |
— то же, четырнадцатипустотный | 1400 | 0,52 | 0,64 | 0,76 |
Кладка или облицовка поверхностей натуральным камнем | ||||
Гранит или базальт | 2800 | 3,49 | 3,49 | 3,49 |
Мрамор | 2800 | 2,91 | 2,91 | 2,91 |
Туф | 2000 | 0,76 | 0,93 | 1,05 |
— то же, но с плотностью | 1800 | 0,56 | 0,70 | 0,81 |
— то же, но с плотностью | 1600 | 0,41 | 0,52 | 0,64 |
— то же, но с плотностью | 1400 | 0,33 | 0,43 | 0,52 |
— то же, но с плотностью | 1200 | 0,27 | 0,35 | 0,41 |
— то же, но с плотностью | 1000 | 0,21 | 0,24 | 0,29 |
Известняк | 2000 | 0,93 | 1,16 | 1,28 |
— то же, но с плотностью | 1800 | 0,70 | 0,93 | 1,05 |
— то же, но с плотностью | 1600 | 0,58 | 0,73 | 0,81 |
— то же, но с плотностью | 1400 | 0,49 | 0,56 | 0,58 |
Таблица коэффициентов теплопроводности бетонов различного типа
Таблица коэффициентов теплопроводности строительных растворов на цементной, известковой, гипсовой основе
Таблица коэффициентов теплопроводности дерева, изделий на основе древесины, а также других природных материалов
Таблица коэффициентов теплопроводности материалов, применяемых в термоизоляционных целях
Таблица коэффициентов теплопроводности кровельных, гидроизоляционных, облицовочных, рулонных и наливных напольных покрытий
Таблица коэффициентов теплопроводности металлов и стекла
Наименование материала | ρ кг/м³ |
λ₀ Вт/(м×℃) |
λА Вт/(м×℃) |
λБ Вт/(м×℃) |
---|---|---|---|---|
Сталь, в том числе — арматурная стержневая | 7850 | 58 | 58 | 58 |
Чугун | 7200 | 50 | 50 | 50 |
Алюминий | 2600 | 221 | 221 | 221 |
Медь | 8500 | 407 | 407 | 407 |
Бронза | 7500÷9300 | 25÷105 | 25÷105 | 25÷105 |
Латунь | 8100÷8800 | 70÷120 | 70÷120 | 70÷120 |
Стекло кварцевое оконное | 2500 | 0.76 | 0.76 | 0.76 |
Для чего используются такие расчеты в практическом приложении?
Оценка эффективности имеющейся термоизоляции
А для чего бывает необходимо вычислять это сопротивление, какая от этого практическая польза?
Такими расчетами можно очень точно оценить степень термоизоляции своего жилья.
Дело в том, что для различных климатических регионов России специалистами рассчитаны так называемые нормативные показатели этого сопротивления теплопередаче, отдельно для стен, перекрытий и покрытий. То есть если сопротивление конструкции отвечает этой норме, то за утепление можно быть спокойным.
Значение этих нормированных сопротивлений для разных строительных конструкций можно найти, воспользовавшись предлагаемой картой схемой.
Карта-схема территории России для определения нормированных значений сопротивлений теплопередаче.
Если не дотягивает – надо принимать меры, усиливать термоизоляцию, чтобы минимизировать потери тепла. И, стало быть, решить обратную задачу. То есть с использованием той же формулы (сопротивление от коэффициента теплопроводности и толщины) найти ту толщину утепления, которая восполнит имеющийся «дефицит» до нормы.
Термоизоляционную конструкцию сразу следует делать с опорой на проведенные теплотехнические расчеты.
Ну а если термоизоляции пока нет, то тут и вовсе все просто. Тогда потребуется определить, какой слой выбранного утеплительного материала обеспечит выход на нормированное значение сопротивления теплопередаче.
Определение уровня тепловых потерь
Еще одна важная задача – это определение величины тепловых потерь через ограждающую конструкцию. Такие вычисления бывают необходимы когда, например, определяется требуемая мощность системы отопления. Как по помещениям — для правильной расстановки обогревательных приборов (радиаторов), так и общая — для выбора оптимальной модели котла.
Каждая конструкция характеризуется своим уровнем тепловых потерь, которые необходимо определять и для правильного планирования системы отопления, и для совершенствования системы термоизоляции.
Дело в том, что это сопротивление описывается еще одной формулой, уже от разницы температур и количества тепла, уходящего через ограждающую конструкцию площадью один квадратный метр.
R = Δt / q
Δt — разница температур по обе стороны конструкции, ℃.
q — удельное количество теряемого тепла, Вт.
То есть если известна площадь ограждающей конструкции и ее термическое сопротивление (определенное, например, через толщину и коэффициент теплопроводности), если известно, для каких условий производится расчет (например, нормальная температура в помещении и самые сильные морозы, присущие данной местности), то можно спрогнозировать и тепловые потери через эту конструкцию.
Q = S × Δt/R
Q — теплопотери через ограждающую конструкцию, Вт.
S — площадь этой конструкции, м².
Такие расчеты в помещении проводятся для всех ограждающих конструкций, контактирующих с холодом, и затем определяется суммарные потери, которые должны компенсироваться системой отопления. Или, если эти потери получаются слишком большими – это становится побудительным мотивом к усовершенствованию системы термоизоляции – что-то с ней не так.
Еще одна ремарка. Это мы говорили о конструкциях, состоящих из нескольких слоев разных строительных и утеплительных материалов. А как быть с окнами? Как для них просчитывается сопротивление теплопередаче?
Методика здесь – несколько иная, и самостоятельно заниматься такими расчетами вряд ли имеет смысл. Можно воспользоваться таблицей, в которой уже имеются готовые значения сопротивления для различных типов конструкций окон.
Таблица приведенных значений сопротивления теплопередаче для окон, остекленных балконных дверей, световых проемов (фонарей)
Материал и схема запонения проема | Приведенное термическое Ro, м ² × °С/Вт | |
---|---|---|
Д и ПВХ | А | |
Двойное остекление в спаренных переплетах | 0.4 | — |
Двойное остекление в раздельных переплетах | 0.44 | 0,34* |
Тройное остекление в раздельно-спаренных переплетах | 0.55 | 0.46 |
Однокамерный стеклопакет: | ||
— из обычного стекла | 0.38 | 0.34 |
— из стекла с твердым селективным покрытием | 0.51 | 0.43 |
— из стекла с мягким селективным покрытием | 0.56 | 0.47 |
Двухкамерный стеклопакет: | ||
— из обычного стекла (с межстекольным расстоянием 6 мм) | 0.51 | 0.43 |
— из обычного стекла (с межстекольным расстоянием 12 мм) | 0.54 | 0.45 |
— из стекла с твердым селективным покрытием | 0.58 | 0.48 |
— из стекла с мягким селективным покрытием | 0.68 | 0.52 |
— из стекла с твердым селективным покрытием и заполнением аргоном | 0.65 | 0.53 |
Обычное стекло и однокамерный стеклопакет в раздельных переплетах: | ||
— из обычного стекла | 0.56 | — |
— из стекла с твердым селективным покрытием | 0.65 | — |
— из стекла с мягким селективным покрытием | 0.72 | — |
— из стекла с твердым селективным покрытием и заполнением аргоном | 0.69 | — |
Обычное стекло и двухкамерный стеклопакет в раздельных переплетах: | ||
— из обычного стекла | 0.68 | — |
— из стекла с твердым селективным покрытием | 0.74 | — |
— из стекла с мягким селективным покрытием | 0.81 | — |
— из стекла с твердым селективным покрытием и заполнением аргоном | 0.82 | — |
Два однокамерных стеклопакета в спаренных переплетах | 0.7 | — |
Два однокамерных стеклопакета в раздельных переплетах | 0.74 | — |
Четырехслойное остекление в двух спаренных переплетах | 0.8 | — |
Блоки стеклянные пустотные (с шириной кладочных швов 6 мм) размером: | ||
-200×200 ×100 мм | 0,31 (без переплета) | |
-250×250 ×100 мм | 0,33 (без переплета) | |
Примечания: | ||
Д и ПВХ — переплеты из дерева или пластика (поливинилхлорида) | ||
А — переплеты из алюмииия | ||
* — перепеты из стали | ||
все указанные значения даны для площади остекления 75% от площади светового проема |
Понятно, что тепловые потери будут считаться, исходя из площади остекления и разницы температур.
Надо заметить, что профессиональные теплотехнические расчеты учитывают еще и множество различных поправочных коэффициентов, в том числе на инсоляцию (воздействие солнечных лучей), светопоглощающие и отражающие свойства поверхностей, неоднородность конструкций и другие. Но для самостоятельной первичной оценки достаточно и того алгоритма, что приведен выше.
Для любителей же более обстоятельного подхода можно порекомендовать следующий видеосюжет:
Видео: Алгоритмы профессионального расчета сопротивления теплопередаче стен
Мы же завершим публикацию онлайн-калькулятором, который вполне позволяет на бытовом уровне решить ряд задач, о которых шла речь выше.
Калькулятор расчета термического сопротивления ограждающей конструкции
Пояснения по работе с калькулятором
Программа несложна, но все же требует некоторых пояснений.
Предлагаемый алгоритм расчета позволяет провести вычисления сопротивления теплопередаче для любой ограждающей конструкции, включающей от одного до пяти различных слоев.
- Первый слой пусть будет считаться по умолчанию основным. Для него указывается:
— его толщина в миллиметрах (так сделано для удобства, а перевод в метры программа выполнит самостоятельно).
— коэффициент теплопроводности материала, из которого создан этот слой. Значение берется из таблиц, с учетом режима эксплуатации А или Б. При вводе значения в калькулятор вместо запятой в качестве десятичного разделителя используется точка.
- Вторым слоем предлагается указать имеющуюся (если есть) или планируемую термоизоляцию. Здесь уже на выбор – если оставить по умолчанию «нет», то программа проигнорирует этот слой. Если согласиться – появятся поля ввода данных, те же толщина и коэффициент теплопроводности.
- Аналогично по выбору пользователя вводятся или игнорируются еще три произвольных слоя. Это, кстати, могут быть внешняя и внутренняя отделка, если она выполнена из значимых для теплопроводности материалов, многослойная кладка стены и т.п.
- Если задача стоит только в определении сопротивления теплопередаче, то можно сразу переходить к клавише «РАССЧИТАТЬ…».
- Ну а если есть желание еще и найти величину тепловых потерь через рассчитываемую ограждающую конструкцию, то ставится отметка «да, включить дополнительный расчёт». В этом случае появятся еще три поля ввода данных – площадь ограждающей конструкции, температура в помещении и температура на улице.
Уличную температуру для расчетов, как правило, берут минимальную, свойственную самой холодной декаде зимы в регионе проживания. Так задается необходимый запас мощности отопительного оборудования и эффективности системы утепления. Домашнюю температуру обычно считают в пределах 20÷24 ℃ для жилых помещений. Для нежилых (подъезды, коридоры, кладовые и т.п.) можно ограничиться +15 ℃. Для ванных, душевых, бань – порядка 35 ℃.
Рассчитанное термическое сопротивление показывается первой строкой появляющегося результата. Если был выбран вариант с вычислением тепловых потерь, то их значение (в ваттах) будет указано во второй строке.
Одним из важнейших показателей строительных материалов, особенно в условиях российского климата, является их теплопроводность, которая в общем виде определяется как способность тела к теплообмену (то есть распределению тепла от более горячей среды к более холодной).
В данном случае более холодная среда – это улица, а горячая – внутреннее пространство (летом зачастую наоборот). Сравнительная характеристика приведена в таблице:
Коэффициент рассчитывается как количество тепла, которое пройдет через материал толщиной 1 метр за 1 час при разнице температур внутри и снаружи на 1 градус Цельсия. Соответственно, единицей измерения строительных материалов является Вт/ (м*оС) – 1 Ватт, разделенный на произведение метра и градуса.
Материал | Теплопроводность,Вт/(м·град) | Теплоемкость,Дж/(кг·град) | Плотность,кг/м3 |
Асбестоцемент | 27759 | 1510 | 1500-1900 |
Асбестоцементный лист | 0.41 | 1510 | 1601 |
Асбозурит | 0.14-0.19 | — | 400-652 |
Асбослюда | 0.13-0.15 | — | 450-625 |
Асботекстолит Г ( ГОСТ 5-78) | — | 1670 | 1500-1710 |
Асфальт | 0.71 | 1700-2100 | 1100-2111 |
Асфальтобетон (ГОСТ 9128-84) | 42856 | 1680 | 2110 |
Асфальт в полах | 0.8 | — | — |
Ацеталь (полиацеталь,полиформальдегид) POM | 0.221 | — | 1400 |
Береза | 0.151 | 1250 | 510-770 |
Бетон легкий с природной пемзой | 0.15-0.45 | — | 500-1200 |
Бетон на зольном гравии | 0.24-0.47 | 840 | 1000-1400 |
Бетон на каменном щебне | 0.9-1.5 | — | 2200-2500 |
Бетон на котельном шлаке | 0.57 | 880 | 1400 |
Бетон на песке | 0.71 | 710 | 1800-2500 |
Бетон на топливных шлаках | 0.3-0.7 | 840 | 1000-1800 |
Бетон силикатный плотный | 0.81 | 880 | 1800 |
Битумоперлит | 0.09-0.13 | 1130 | 300-410 |
Блок газобетонный | 0.15-0.3 | — | 400-800 |
Блок керамический поризованный | 0.2 | — | — |
Вата минеральная легкая | 0.045 | 920 | 50 |
Вата минеральная тяжелая | 0.055 | 920 | 100-150 |
пенобетон, газо- и пеносиликат | 0.08-0.21 | 840 | 300-1000 |
Газо- и пенозолобетон | 0.17-0.29 | 840 | 800-1200 |
Гетинакс | 0.230 | 1400 | 1350 |
Гипс формованный сухой | 0.430 | 1050 | 1100-1800 |
Гипсокартон | 0.12-0.2 | 950 | 500-900 |
Гипсоперлитовый раствор | 0.140 | — | — |
Глина | 0.7-0.9 | 750 | 1600-2900 |
Глина огнеупорная | 42826 | 800 | 1800 |
Гравий (наполнитель) | 0.4-0.930 | 850 | 1850 |
Гравий керамзитовый (ГОСТ 9759-83) — засыпка | 0.1-0.18 | 840 | 200-800 |
Гравий шунгизитовый (ГОСТ 19345-83) — засыпка | 0.11-0.160 | 840 | 400-800 |
Гранит (облицовка) | 42858 | 880 | 2600-3000 |
Грунт 10% воды | 27396 | — | — |
Грунт песчаный | 42370 | 900 | — |
Грунт сухой | 0.410 | 850 | 1500 |
Гудрон | 0.30 | — | 950-1030 |
Железо | 70-80 | 450 | 7870 |
Железобетон | 42917 | 840 | 2500 |
Железобетон набивной | 20090 | 840 | 2400 |
Зола древесная | 0.150 | 750 | 780 |
Золото | 318 | 129 | 19320 |
Каменноугольная пыль | 0.1210 | — | 730 |
Камень керамический поризованный | 0.14-0.1850 | — | 810-840 |
Картон гофрированный | 0.06-0.07 | 1150 | 700 |
Картон облицовочный | 0.180 | 2300 | 1000 |
Картон парафинированный | 0.0750 | — | — |
Картон плотный | 0.1-0.230 | 1200 | 600-900 |
Картон пробковый | 0.0420 | — | 145 |
Картон строительный многослойный | 0.130 | 2390 | 650 |
Картон термоизоляционный | 0.04-0.06 | — | 500 |
Каучук натуральный | 0.180 | 1400 | 910 |
Каучук твердый | 0.160 | — | — |
Каучук фторированный | 0.055-0.06 | — | 180 |
Кедр красный | 0.095 | — | 500-570 |
Керамзит | 0.16-0.2 | 750 | 800-1000 |
Керамзитобетон легкий | 0.18-0.46 | — | 500-1200 |
Кирпич доменный (огнеупорный) | 0.5-0.8 | — | 1000-2000 |
Кирпич диатомовый | 0.8 | — | 500 |
Кирпич изоляционный | 0.14 | — | — |
Кирпич карборундовый | — | 700 | 1000-1300 |
Кирпич красный плотный | 0.67 | 840-880 | 1700-2100 |
Кирпич красный пористый | 0.440 | — | 1500 |
Кирпич клинкерный | 0.8-1.60 | — | 1800-2000 |
Кирпич кремнеземный | 0.150 | — | — |
Кирпич облицовочный | 0.930 | 880 | 1800 |
Кирпич пустотелый | 0.440 | — | — |
Кирпич силикатный | 0.5-1.3 | 750-840 | 1000-2200 |
Кирпич силикатный с тех. пустотами | 0.70 | — | — |
Кирпич силикатный щелевой | 0.40 | — | — |
Кирпич сплошной | 0.670 | — | — |
Кирпич строительный | 0.23-0.30 | 800 | 800-1500 |
Кирпич трепельный | 0.270 | 710 | 700-1300 |
Кирпич шлаковый | 0.580 | — | 1100-1400 |
Листы пробковые тяжелые | 0.05 | — | 260 |
Магнезия в форме сегментов для изоляции труб | 0.073-0.084 | — | 220-300 |
Мастика асфальтовая | 0.70 | — | 2000 |
Маты, холсты базальтовые | 0.03-0.04 | — | 25-80 |
Маты минераловатные прошивные | 0.048-0.056 | 840 | 50-125 |
Нейлон | 0.17-0.24 | 1600 | 1300 |
Опилки древесные | 0.07-0.093 | — | 200-400 |
Пакля | 0.05 | 2300 | 150 |
Панели стеновые из гипса | 0.29-0.41 | — | 600-900 |
Парафин | 0.270 | — | 870-920 |
Паркет дубовый | 0.420 | 1100 | 1800 |
Паркет штучный | 0.230 | 880 | 1150 |
Паркет щитовой | 0.170 | 880 | 700 |
Пемза | 0.11-0.16 | — | 400-700 |
Пемзобетон | 0.19-0.52 | 840 | 800-1600 |
Пенобетон | 0.12-0.350 | 840 | 300-1250 |
Пенопласт резопен ФРП-1 | 0.041-0.043 | — | 65-110 |
Пенополиуретановые панели | 0.025 | — | — |
Пеносиликальцит | 0.122-0.320 | — | 400-1200 |
Пеностекло легкое | 0.045-0.07 | — | 100..200 |
Пеностекло или газо-стекло | 0.07-0.11 | 840 | 200-400 |
Пенофол | 0.037-0.039 | — | 44-74 |
Пергамент | 0.071 | — | — |
Песок 0% влажности | 0.330 | 800 | 1500 |
Песок 10% влажности | 0.970 | — | — |
Песок 20% влажности | 12055 | — | — |
Плита пробковая | 0.043-0.055 | 1850 | 80-500 |
Плитка облицовочная, кафельная | 42856 | — | 2000 |
Полиуретан | 0.320 | — | 1200 |
Полиэтилен высокой плотности | 0.35-0.48 | 1900-2300 | 955 |
Полиэтилен низкой плотности | 0.25-0.34 | 1700 | 920 |
Поролон | 0.04 | — | 34 |
Портландцемент (раствор) | 0.470 | — | — |
Прессшпан | 0.26-0.22 | — | — |
Пробка гранулированная | 0.038 | 1800 | 45 |
Пробка минеральная на битумной основе | 0.073-0.096 | — | 270-350 |
Пробка техническая | 0.037 | 1800 | 50 |
Пробковое покрытие для полов | 0.078 | — | 540 |
Ракушечник | 0.27-0.63 | 835 | 1000-1800 |
Раствор гипсовый затирочный | 0.50 | 900 | 1200 |
Резина пористая | 0.05-0.17 | 2050 | 160-580 |
Рубероид (ГОСТ 10923-82) | 0.17 | 1680 | 600 |
Стекловата | 0.03 | 800 | 155-200 |
Стекловолокно | 0.040 | 840 | 1700-2000 |
Туфобетон | 0.29-0.64 | 840 | 1200-1800 |
Уголь каменный обыкновенный | 0.24-0.27 | — | 1200-1350 |
Шлакопемзобетон (термозитобетон) | 0.23-0.52 | 840 | 1000-1800 |
Штукатурка гипсовая | 0.30 | 840 | 800 |
Щебень из доменного шлака | 0.12-0.18 | 840 | 400-800 |
Эковата | 0.032-0.041 | 2300 | 35-60 |
Сравнение теплопроводности строительных материалов, а также их плотности и паропроницаемости представлено в таблице.
Жирным шрифтом выделены наиболее эффективные материалы, применяющиеся в строительстве домов.
Ниже представлена наглядная схема, из которой легко увидеть, какую толщину должна иметь стена из разных материалов, чтобы она удерживала одинаковое количество тепла.
Очевидно, что по этому показателю преимущество за искусственными материалами (например, пенополистиролом).
Примерно такую же картину можно увидеть, если составить диаграмму строительных материалов, которые наиболее часто применяются в работе.
При этом большое значение имеют условия окружающей среды. Ниже приведена таблица теплопроводности строительных материалов, которые эксплуатируются:
- в обычных условиях (А);
- в условиях повышенной влажности (Б);
- в условиях засушливого климата.
Данные взяты на основе соответствующих строительных норм и правил (СНиП II-3-79), а также из открытых интернет-источников (веб-страницы производителей соответствующих материалов). Если данные по конкретным условиям эксплуатации отсутствуют, то поле в таблице не заполнено.
Чем больше показатель, тем больше тепла он пропускает при прочих равных условиях. Так, у некоторых видов пенополистирола этот показатель равен 0,031, а у пенополиуретана – 0,041. С другой стороны, у бетона коэффициент на порядок выше – 1,51, следовательно, он пропускает тепло значительно лучше, чем искусственные материалы.
Сравнительные потери тепла через разные поверхности дома можно увидеть на схеме (100% — общие потери).
Очевидно, что большая часть уходит именно из стен, поэтому отделка этой части помещения – наиболее важная задача, особенно в условиях северного климата.
Видео для справки
Применение материалов с небольшой теплопроводностью в утеплении домов
В основном сегодня используются искусственные материалы – пенопласт, минеральная вата, пенополиуретан, пенополистирол и другие. Они очень эффективны, доступны по цене и достаточно легко монтируются, не требуя особых навыков работы.
- при возведении стен (требуется меньшая их толщина, поскольку основную нагрузку по сбережению тепла берут на себя именно теплоизоляционные материалы);
- при обслуживании дома (тратится меньше ресурсов на отопление).
Пенопласт
Это один из лидеров в своей категории, который широко используется в утеплении стен как снаружи, так и внутри. Коэффициент составляет примерно 0,052-0,055 Вт/(оС*м).
Как выбрать качественный утеплитель
При выборе конкретного образца важно обращать внимание на маркировке – именно она содержит все основные сведения, влияющие на свойства.
Например, ПСБ-С-15 означает следующее:
Минеральная вата
Еще один довольно распространенный утеплитель, который применяется как во внутренней, так и в наружной отделке помещений, – это минеральная вата.
Материал достаточно долговечный, недорогой и несложен в монтаже. Вместе с тем, в отличие от пенопласта, она хорошо впитывает влагу, поэтому при ее использовании необходимо применять и гидроизоляционные материалы, что удорожает монтажные работы.
Коэффициент теплопроводности строительных материалов: что означает показатель + таблица значений
Строительное дело предусматривает использование любых подходящих материалов. Главные критерии – безопасность для жизни и здоровья, тепловая проводимость, надёжность. Далее следуют, цена, свойства эстетичности, универсальность применения и т.д.
Рассмотрим одну из важнейших характеристик стройматериалов – коэффициент теплопроводности, так как именно от этого свойства во многом зависит, к примеру, уровень комфорта в доме.
Что такое КТП строительного материала?
Теоретически, да и практически тоже, строительными материалами, как правило, создаются две поверхности – наружная и внутренняя. С точки зрения физики, теплая область всегда стремится к холодной области.
Применительно к стройматериалу, тепло будет стремиться от одной поверхности (более теплой) к другой поверхности (менее теплой). Вот, собственно, способность материала относительно такого перехода и называется – коэффициентом теплопроводности или в аббревиатуре – КТП.
Схема, поясняющая эффект теплопроводности: 1 – тепловая энергия; 2 – коэффициент теплопроводности; 3 – температура первой поверхности; 4 – температура второй поверхности; 5 – толщина стройматериала
Характеристика КТП обычно строится на основе испытаний, когда берётся экспериментальный экземпляр размерами 100х100 см и к нему применяется тепловое воздействие с учётом разницы температур двух поверхностей в 1 градус. Время воздействия 1 час.
Соответственно, измеряется теплопроводность в Ваттах на метр на градус (Вт/м°C). Коэффициент обозначается греческим символом λ.
По умолчанию, теплопроводность различных материалов для строительства со значением меньше 0,175 Вт/м°C, приравнивает эти материалы к разряду изоляционных.
Современным производством освоены технологии изготовления стройматериалов, уровень КТП которых составляет меньше 0,05 Вт/м°C. Благодаря таким изделиям, удается достичь выраженного экономического эффекта в плане потребления энергетических ресурсов.
Влияние факторов на уровень теплопроводности
Каждый отдельно взятый стройматериал имеет определенное строение и обладает своеобразным физическим состоянием.
Основой этого являются:
- размерность кристаллов структуры;
- фазовое состояние вещества;
- степень кристаллизации;
- анизотропия теплопроводности кристаллов;
- объем пористости и структуры;
- направление теплового потока.
Все это – факторы влияния. Определенное влияние на уровень КТП также оказывает химический состав и примеси. Количество примесей, как показала практика, оказывает особенно выразительное влияние на уровень теплопроводности кристаллических компонентов.
Изоляционные стройматериалы – класс продуктов под строительство, созданных с учётом свойств КТП, приближенных к оптимальным свойствам. Однако достичь идеальной теплопроводности при сохранении других качеств, крайне сложно
В свою очередь влияние на КТП оказывают условия эксплуатации стройматериала – температура, давление, уровень влажности и др.
Стройматериалы с минимальным КТП
Согласно исследованиям, минимальным значением теплопроводности (около 0,023 Вт/м°C) обладает сухой воздух.
С точки зрения применения сухого воздуха в структуре строительного материала, необходима конструкция, где сухой воздух пребывает внутри замкнутых многочисленных пространств небольшого объёма. Конструктивно такая конфигурация представлена в образе многочисленных пор внутри структуры.
Отсюда логичный вывод: малым уровнем КТП должен обладать стройматериал, внутренняя структура которого представляет собой пористое образование.
Причём, в зависимости от максимально допустимой пористости материала, значение теплопроводности приближается к значению КТП сухого воздуха.
Созданию строительного материала с минимальной теплопроводностью способствует пористая структура. Чем больше содержится пор разного объема в структуре материала, тем лучший КТП допустимо получить
В современном производстве применяются несколько технологий для получения пористости строительного материала.
В частности, используются технологии:
- пенообразования;
- газообразования;
- водозатворения;
- вспучивания;
- внедрения добавок;
- создания волоконных каркасов.
Следует отметить: коэффициент теплопроводности напрямую связан с такими свойствами, как плотность, теплоемкость, температурная проводимость.
Значение теплопроводности может быть рассчитано по формуле:
λ = Q / S *(T1-T2)*t,
Где:
- Q – количество тепла;
- S – толщина материала;
- T1, T2 – температура с двух сторон материала;
- t – время.
Средняя величина плотности и теплопроводности обратно пропорциональна величине пористости. Поэтому, исходя из плотности структуры стройматериала, зависимость от нее теплопроводности можно рассчитать так:
λ = 1,16 √ 0,0196+0,22d2 – 0,16,
Где: d – значение плотности. Это формула В.П. Некрасова, демонстрирующая влияние плотности конкретного материала на значение его КТП.
Влияние влаги на теплопроводность стройматериала
Опять же судя по примерам использования стройматериалов на практике, выясняется негативное влияние влаги на КТП стройматериала. Замечено – чем большему увлажнению подвергается стройматериал, тем более высоким становится значение КТП.
Различными способами стремятся защитить от воздействия влаги материал, используемый в строительстве. Эта мера вполне оправдана, учитывая повышение коэффициента для мокрого стройматериала
Обосновать такой момент несложно. Воздействие влаги на структуру строительного материала сопровождается увлажнением воздуха в порах и частичным замещением воздушной среды.
Учитывая, что параметр коэффициента теплопроводности для воды составляет 0,58 Вт/м°C, становится понятным существенное повышение КТП материала.
Следует также отметить более негативный эффект, когда вода, попадающая в пористую структуру, дополнительно замораживается – превращается в лёд.
Соответственно, несложно просчитать ещё большее увеличение теплопроводности, принимая во внимание параметры КТП льда, равного значению 2,3 Вт/м°C. Прирост примерно в четыре раза к параметру теплопроводности воды.
Одной из причин отказа от зимнего строительства в пользу стройки летом следует считать именно фактор возможного подмораживания некоторых видов стройматериалов и как следствие – повышения теплопроводности
Отсюда становятся очевидными строительные требования относительно защиты изоляционных стройматериалов от попадания влаги. Ведь уровень теплопроводности растёт в прямой пропорциональности от количественной влажности.
Не менее значимым видится и другой момент – обратный, когда структура строительного материала подвергается существенному нагреву. Чрезмерно высокая температура также провоцирует рост теплопроводности.
Происходит такое по причине повышения кинематической энергии молекул, составляющих структурную основу стройматериала.
Правда, существует класс материалов, структура которых, напротив, приобретает лучшие свойства теплопроводности в режиме сильного нагрева. Одним из таких материалов является металл.
Если под сильным нагревом большая часть широко распространенных стройматериалов изменяет теплопроводность в сторону увеличения, сильный нагрев металла приводит к обратному эффекту – КТП металла понижается
Методы определения коэффициента
Используются разные методики в этом направлении, но по факту все технологии измерения объединены двумя группами методов:
- Режим стационарных измерений.
- Режим нестационарных измерений.
Стационарная методика подразумевает работу с параметрами, неизменными с течением времени или изменяющимися в незначительной степени. Эта технология, судя по практическим применениям, позволяет рассчитывать на более точные результаты КТП.
Действия, направленные на измерения теплопроводности, стационарный способ допускает проводить в широком температурном диапазоне – 20 – 700 °C. Но вместе с тем, стационарная технология считается трудоёмкой и сложной методикой, требующей большого количества времени на исполнение.
Пример аппарата, предназначенного под выполнение измерений коэффициента теплопроводности. Это одна из современных цифровых конструкций, обеспечивающая получение быстрого и точного результата
Другая технология измерений – нестационарная, видится более упрощенной, требующей для исполнения работ от 10 до 30 минут. Однако в этом случае существенно ограничен диапазон температур. Тем не менее, методика нашла широкое применение в условиях производственного сектора.
Таблица теплопроводности стройматериалов
Подвергать измерениям многие существующие и широко используемые стройматериалы не имеет смысла.
Все эти продукты, как правило, испытаны неоднократно, на основании чего составлена таблица теплопроводности строительных материалов, куда входят практически все нужные на стройке материалы.
Один из вариантов такой таблицы представлен ниже, где КТП – коэффициент теплопроводности:
Рекомендуем также прочесть и другие наши статьи, где мы рассказываем о том как правильно выбирать утеплитель:
- Утеплители для мансардной крыши.
- Материалы для утепления дома изнутри.
- Утеплители для потолка.
- Материалы для наружной теплоизоляции.
- Утеплитель для пола в деревянном доме.
Выводы и полезное видео по теме
Видеоролик тематически направленный, где достаточно подробно разъясняется – что такое КТП и «с чем его едят». Ознакомившись с материалом, представленным в ролике, появляются высокие шансы стать профессиональным строителем.
Очевидный момент – потенциальному строителю обязательно необходимо знать о теплопроводности и ее зависимости от различных факторов. Эти знания помогут строить не просто качественно, но с высокой степенью надежности и долговечности объекта. Использование коэффициента по существу – это реальная экономия денег, допустим, на оплате за те же коммунальные услуги.