Электромагнитное реле

Окт 15, 2019 Дом

Электромагнитное реле

Содержание

Лада 2110 ツɐʞdиҺツ (БЫВШАЯ) ›
Бортжурнал ›
Принцип действия и назначение работы Реле.

Для чего нужна установка реле в автомобиле ? Начнем с определения:

***********************************************************************************************************************
Что такое реле и для чего оно нужно

Реле — электрическое устройство (выключатель), предназначенное для замыкания и размыкания различных участков электрических цепей при заданных изменениях электрических или неэлектрических входных величин.
Типы реле могут различаться по управляющему сигналу и по исполнению, не будем останавливаться на этом, тем более все это есть на той же википедии. Отметим лишь, что наибольшее распространение получили электрические (электромагнитные) реле.

Понять для чего нужно реле из определения трудно, поэтому разжуем на простых словах:
Реле предназначено для коммутации больших токов нагрузки. Другими словами является переключателем, а еще проще — принцип работы реле — малым током (например сигналом кнопки) включать цепи с большим током. А используют реле, когда исполнительное устройство (стартер, генератор, вентилятор, обогрев зеркал, клаксон и т.д.) потребляет больший ток (до 30-40 ампер).

НАПРИМЕР: Для того чтобы с маленькой кнопочки завести двигатель, необходимо, чтобы включился стартер, который потребляет от 80 до 300 ампер. Если не использовать реле, тогда кнопка не выдержит большого тока и расплавится, также как и не предназначенная для больших токов проводка. Поэтому, делают подключение через реле (между кнопочкой и стартером устанавливают реле), которое по импульсу малого тока кнопки внутри себя замыкает мощные контакты, тем самым включая стартер. Как это происходит ?
***********************************************************************************************************************
Устройство реле

Электромагнитное реле состоит из:
электромагнита (представляет собой электрический провод, намотанный на катушку с сердечником из магнитного материала).
якоря (пластина из магнитного материала, через толкатель управляющая контактами).
переключателя (могут быть замыкающими, размыкающими, переключающими).


При пропускании электрического тока через обмотку электромагнита возникающее магнитное поле притягивает к сердечнику якорь, который через толкатель смещает и тем самым переключает контакты.
**************************************************************************************************************************
Контакты и принцип работы реле

Контакты реле:
Контакты 85 и 86 — это катушка.
Контакт 30 — общий контакт, всегда присутствует в реле. Он, без подачи напряжения на контакты обмотки, постоянно замкнут на контакт 87а.
Контакт 87А — нормально-замкнутый контакт.
Контакт 87 — нормально-разомкнутый контакт.
Силовые контакты имеют всегда маркировку 30, 87 и 87а.


Принцип действия реле:
В состоянии покоя, т.е., когда на катушке нет питания, контакт 30 замкнут с контактом 87А. При одновременной подаче питания на контакты 85 и 86 (на один контакт «плюс» на другой — «минус», без разницы куда что, если на реле нет маркировки диода) катушка «возбуждается», то есть срабатывает. Тогда контакт 30 отмыкается от контакта 87А и соединяется с контактом 87.

************************************************************************************************************************
Некоторые виды реле:
-реле с пятью контактами (5ти контактное реле). Если на обмотку подан сигнал, то 30 контакт отключается от 87а и подключается к 87.
-реле с четырьмя контактами (4х контактное реле). Контакт 87а или 87 может отсутствовать, тогда реле будет работать только на включение или выключение (замыкание или размыкание) силовой цепи.
Все реле имеют контакты обмотки (85 и 86 контакты).
*************************************************************************************************************************
Применяемость и назначение:

Реле 4х контактное и 5и контактное используются применяются в авто как средство включение или переключение цепи.

Вывод:
Главное отличие и сходства 4х контактного реле от 5ти контактного реле в том:
-Сходство этих типов реле. У них есть катушка возбуждения которая переключает перемычку (якарь). (Контакты 86,85-катушка)
-Отличие этих реле состоит в том что.
У 4х контактного реле контур всегда разомкнут (контакты 87,30) и под воздействием катушки (возбудителя) контур замыкается (происходит контакт).
У 5ти контактного реле контур разомкнута, замкнутый (контакты 87а,30- замкнуты) (контакты 87,30-разомкнуты) под воздействием катушки(возбудителя) происходит переключение перемычки (якоря) с контакта 87а на контакт 87.

Схему применения различны:

Удачи всем!

Зачем нужно реле

Иными словами реле представляет собой устройство, которое необходимо для осуществления скачкообразных изменений состояния электрической цепи в результате заданных входных воздействий. Изначально термин «реле» был применен к электромагнитным реле, которые использовались в целях усиления электрических телеграфных сигналов, ослабленных в протяженных линиях передач до значений, требуемых для работы телеграфных аппаратов.Электромагнитное реле состоит из электромагнита и одной или нескольких контактных групп, которые управляются приводным механизмом, связанным с якорем электромагнита. Принцип работы реле основан на действии электромагнитных сил, возникающих в металлическом сердечнике при прохождении тока по виткам его катушки. Над сердечником электромагнита находится подвижный якорь (пластина) с контактами, напротив которых расположены неподвижные контакты.Изначально якорь удерживается пружиной. При возникновении напряжения электромагнит притягивает якорь и замыкает или размыкает контакты. После того как внешний сигнал прекращает свое действие, контакты возвращаются в исходное положение, т.е. у контактов реле два рабочих положения – замкнутое и разомкнутое.Электромагнитное реле – это универсальный коммутатор аналоговых и импульсных сигналов. Оно выполняет ряд важнейших функций. Реле является гальванической развязкой между цепью управления и цепью нагрузки. Благодаря реле управляющий сигнал размножается на несколько выходных сигналов, данное устройство позволяет усилить мощность управляющего сигнала. Реле дает возможность независимо управлять несколькими выходными цепями с разными уровнями тока и напряжения, разделять цепи с различными уровнями рабочих токов и напряжений, а также цепи постоянного и переменного тока. Благодаря электромагнитному реле возможное преобразование и нормирование уровней электрических сигналов.

Этот прибор управления электропитанием — одно из наиболее распространенных устройств автоматизации процессов в электротехнике. Фактически, это автоматический выключатель аппаратуры, который соединяет или разъединяет электрические цепи при достижении пороговых значений определенных условий и/или внешнего воздействия. Современные реле имеют существенные конструкционные различия, особенности срабатывания и широкий диапазон разнообразных эксплуатационных характеристик. В рамках сегодняшнего обзора мы более детально рассмотрим что такое реле, каких видов они бывают, где используются и какими характеристиками обладают.

Внешний вид современного электромагнитного реле, 5-контактная модель (12 В / 10 А) производства Jtron

Для чего нужно реле: область применения

Реле получило широкое применение в промышленности. Его используют для автоматизации производственных процессов, а также для защиты электроустановок. На данный момент широко используются как электронные устройства под управлением микропроцессоров, так и аналоговые, рабочая схема которых состоит из резисторов, транзисторов, диодов и др. Область применения зависит от принципа действия реле и типа контролируемой величины:

  • Электрические (электромагнитные) – используется для включения/отключения электроприборов, блокировки подачи электроэнергии, размножения контактов и т.п. Могут управляться множеством внешних факторов, таких как напряжение в электросети, мощность, величина нагрузки, количество обращений (коммутации). Такие устройства чаще всего используются при подключении больших силовых установок, где они функционируют в ручном режиме. Для процессов автоматизации и управления логистическими операциями такие приборы используются редко.
  • Электротепловые – состоят из системы биметаллических пластин, которые выступают в качестве контактов. Принцип действия основан на способности металлов к линейному расширению во время нагрева. Используются металлические сплавы с различными коэффициентами расширения. Применяются в качестве температурных детекторов, защитных устройств (контакты разъединяются при перегреве), датчиков времени.
  • Временные – широко применяются при управлении и производственной аппаратурой. Благодаря применению различных схем замедления в электромагнитных, электродвигательных, герконовых и других типах они имеют широкий диапазон временных интервалов, которые можно настраивать.

Коммутационный шкаф, где находятся выносные реле

Краткая историческая справка создания реле

Большинство исторических документов указывают, что первые действующие экземпляры электрических устройств аналогичных современным реле, которые использовали принцип электромагнитного действия, были получены американским физиком Джозефом Генри в 1835 году. Они стали результатом работы над усовершенствованием телеграфного аппарата, который был изобретён Дж. Генри в 1831 году. Уже в 1837 г. устройство поступило в массовое производство и получило широкое применение в телеграфии. Однако следует отметить, что первые полученные устройства являлись некоммутационными, то есть не выполняли основные функции, возложенные теперь на релейные механизмы управления.

В соответствии с другими источниками первые релейные устройства были созданы в период с 1830 по 1932 гг. русским ученым изобретателем Шиллингом П.Л. Они использовались в вызывном устройстве электромагнитного телеграфного аппарата, разработанного совместно с механиком И. А. Швейкиным, который был продемонстрирован 21 октября 1832 года. Однако большое количество электрокабелей, необходимых для функционирования этого устройства, сделали его дальнейшую эксплуатацию нецелесообразной и релейные элементы в его схеме не получили широкой известности.

Интересно! Название «реле» возникло от английского слова RELAY, которое означало процедуру замены лошадей на почтовых станциях того времени.

В качестве самостоятельного устройства, известного под своим названием, реле упоминаются в патентных заявках на телеграфный аппарат Самюэля Морзе в 1837 году.

Телеграфный аппарат Шиллинга — электромагнитный, шестимультипликаторный вариант. Производился ограниченной серией

Схема устройства электромагнитного реле и принцип работы

Самое простое реле состоит из якоря, электромагнита (сердечник и обмотка), возвратной пружины и соединяющих конструкционных элементов: основания, каркаса, ярма. При поступлении тока срабатывает электромагнит и соединяет якорь с контактом, в результате этого действия электрическая цепь оказывается замкнутой. Если подача тока прекращается или его параметры снижаются ниже определенной величины, пружина возвращает якорь в первоначальное положение, размыкая цепь. В состав современных электромагнитных реле, наряду с обязательными элементами, входят резисторы, обеспечивающие более точную работу и конденсаторы для защиты от скачков напряжения.

Основные элементы электромагнитного реле

Электрические цепи, контролируемые посредством реле, называют управляемыми, а линию, по которой поступает сигнал — управляющей. В большинстве случаев релейные соединения выступают в качестве усилителя, так как замыкают мощные питающие электроцепи при помощи подачи незначительного напряжения. То, как работает реле, зависит также от его типа: постоянного или переменного тока. Для приборов переменного тока характерно срабатывание в зависимости от частоты входящего сигнала. Устройства постоянного тока переходят в рабочее положение в двух случаях:

  • Поляризованные – проявляют чувствительность к полярности тока, в зависимости от того подается на управляющий контакт + или – якорь отклоняется в разные стороны;
  • Нейтральные – при движении тока в обоих направлениях якорь отклоняется в одну сторону.

Более подробно о том, как работает реле, схема устройства, назначение всех элементов и область применения можно узнать из видео:

Основные технические характеристики реле

Независимо от принципа действия существуют общепринятые параметры, на которые необходимо ориентироваться при выборе устройства:

  • Время срабатывания – величина, определяющая временной промежуток с момента поступления на вход управляющего сигнала и до момента воздействия на электрическую цепь;
  • Коммутируемая мощность – мощность электрической цепи или установки, которой способно управлять реле;
  • Мощность срабатывания – минимальная величина необходимая для срабатывания устройства;
  • Уставка – величина тока срабатывания, как правило, это изменяемый показатель;
  • Величина тока/напряжения втягивание/отпадания – данные параметры характеризуются минимальным и максимальным значением характеристик электричества, при которых осуществляется втягивание якоря или его отпадание от контактов, то есть прерывание электроцепи.

Промежуточное реле РП-25 УХЛ4220 В и его основные характеристики

Основные виды реле и их назначение

В процессе усовершенствование были разработаны множество разновидностей реле. Их номенклатура имеет довольно сложную классификацию:

  • Область применения:
  1. Управление электрическими цепями.
  2. Защита электроустановок.
  3. Автоматизация процессов.
  • Принцип срабатывания:
  1. Электромагнитный.
  2. Тепловой.
  3. Полупроводниковый.
  4. Индукционный.
  • Характеристики управляющих параметров поступающего тока:
  1. Сила тока.
  2. Напряжение.
  3. Частота.
  4. Мощность.
  5. Полярность.
  • Принцип воздействия на электрическую цепь:
  1. Контактный – замыкание/размыкание.
  2. Бесконтактный – изменение параметров тока.

Реле постоянного тока

Реле постоянного тока могут быть электромагнитными, у которых якорь притягивается к сердечнику вследствие возникновения магнитного поля в обмотке катушки, и индукционными, функционирующими под воздействием магнитного поля переменного типа, которые индуцируется непосредственно в подвижном элементе. Реле постоянного тока могут быть: нейтральными, поляризованными или комбинированными.

Преимуществом таких устройств можно считать устойчивость к помехам различного типа, перепадам напряжения и пульсации. Из недостатков следует отметить потребность в специальном блоке питания, и как следствие довольно высокая стоимость и сложность при подключении.

Реле постоянного тока используются для управления автоматикой в различных отраслях производства, транспорта (в частности железнодорожного) и т.п.

Нейтральное электромагнитное реле постоянного тока

Реле переменного тока

Реле переменного тока не нуждаются в специальном блоке питания и могут подключаться непосредственно в контролируемую электросеть переменного напряжения. Однако, они тоже не лишены определенных недостатков, к наиболее значимым относятся:

  • возникновение вибрации при функционировании и необходимость ее предотвращения;
  • чувствительность намного хуже, чем устройство постоянного тока.

В связи с этим данная аппаратура управления используется, чаще всего, для контроля бытовых приборов и небольших промышленных установок и станков.

Реле на 220В переменного тока, малогабаритное, модель Ap-50A, используется в качестве управляющего модуля терморегулятора для теплого электрического пола

Электромагнитные

Наиболее распространенная разновидность релейных устройств. Получила широкую популярность из-за значительных преимуществ перед полупроводниковыми аналогами:

  1. Коммутация электросетей совокупной мощности до 4 кВт при незначительных размерах самого устройства (в среднем до 10 см³).
  2. Устойчивость к внешним помехам и перенапряжению, возникающему внутри коммутируемых сетей из-за работы высоковольтного оборудования.
  3. Высокая надежность и безопасность. Между электромагнитной катушкой и группой коммутируемых контактов существует изоляция выдерживающая, в соответствии с последними требованиями, до 5 кВ.
  4. Низкий уровень тепловыделения.

Пример! При коммутации 10 А тока в электромагнитной катушки рассеивается не более 0,5 Вт. Для сравнения, в симисторных устройствах сопоставимой коммутационной мощности на нагрев уходит до 15 Вт, что требует решать проблему охлаждения коммутационных шкафов.

Принцип работы и подключение 4 контактного реле на видео:

Однако электромагнитные релейные устройства имеют ряд определенных недостатков:

  • низкая скорость работы;
  • ограниченный электромеханический ресурс функционирования;
  • возникновение электромагнитных помех при срабатывании контактов;
  • серьёзные недостатки при коммутации высоковольтных токов с индуктивными нагрузками.

Релейная вычислительная машина РВМ-1 конструкции Н. И. Бессонова созданная в 1956 году

Электронные релейные устройства

В последнее время на замену аналоговым реле приходят электронные релейные устройства. Они имеют значительные преимущества в точности определения исходного напряжения, видов подаваемых нагрузок, мощности и в других рабочих параметрах. Получили широкое применение для подключения установок с большими силовыми нагрузками. Однако их высокая стоимость и низкая надежность не дают им полностью вытеснить аналоговые устройства.

Электронное релейное устройство управление насосным оборудованием

Принцип функционирования основан на механическом замедлении. Реализуется с применением маятников, электродвигателей или электромагнитного эффекта. При этом выдержка замедления для всех трех типов составляет: 1÷15 сек, до 24 часов, до 5 сек соответственно. Используется как для автоматизации процессов производства, так и в бытовых целях для задержки отключения освещения и т.п.

Двухканальное реле времени РЭВ-201

Тепловые/температурные релейные устройства

Принцип действия тепловых релейных приборов основан на воздействии температуры на биметаллическую пару контактных пластин, которые имеют различный коэффициент температурного расширения. Температурное воздействие может осуществляться как от тока нагрузки, так и от специально нагревателя. Тепловые релейные приборы используются, в основном, для защиты электрооборудования от перегрева.

Цифровое температурное реле TР-100

Обозначение реле на схеме

Обозначение релейных устройств различного типа на электрических схемах осуществляется в соответствии с нормативами ГОСТ 21.614-88 и частично ГОСТ 2.755-87.

Наиболее распространённые обозначения релейных устройств на принципиальных электрических схемах

Основные производители реле

Aleph International — более 30 лет на рынке электроники, электротехнических товаров и средств автоматизации. Продукция считается одной из наиболее надежных.

Axicom — подразделение швейцарской фирмы Alcatel Switzerland Ltd. с 1999 года входит в концерн Tyco Electronics. Производит чрезвычайно качественные изделия. Все предлагаемые на российском рынке релейные устройства полностью отвечают требованиям отечественных нормативов по электрической надежности и прочности диэлектриков;

CIT RELAY & SWITCH (Чжэцзян, Китай) — компания специализируется на релейных устройствах, используемых в телекоммуникациях, автоиндустрии и безопасности. Имеет широкую номенклатуру продукции, главным достоинством является доступной цена изделий;

Finder — Европейский производитель специализирующееся на выпуске реле и таймеров. Занимает 3 место в Европе по выпуску электромеханических релейных автоматов промышленного и бытового назначения. Вся продукция сертифицирована по стандартам ISO 9001 и ISO 14001.

NAiS под этой торговой маркой выпускается продукция компании Matsushita Electric Works (Япония). Изделия сертифицированы по стандартам ISO 9001:2000. Номенклатура продукции включает электромеханические и PhotoMOS реле, различные контроллеры и микровыключатели как для промышленного, так и для бытового использования.

Электромагнитное и электронное реле – где купить, цены

Цены на электромагнитные релейные устройства для бытового назначения варьируются в диапазоне 150÷450 руб. для коммутации тока с параметрами в пределах 8÷12 А напряжение 12÷48 В. Стоимость электронных устройств заметно выше и может изменяться в пределах от 1,5 до 5÷6 тыс. руб. в зависимости от их функциональности.

Приобретать рекомендуется либо в специализированных магазинах электроники, либо в интернет-магазинах, где предусмотрен возврат. Покупать устройства на рынках настоятельно не рекомендуется, так как даже для новых приборов там нарушаются условия хранения.

Мы будем рады получить ваши отзывы или вопросы о возможности использования релейной автоматики и опыту применения тех или иных средств.

Ghostgkd777 ›
Блог ›
Реле скорости [Реле частоты импульсов]

Сразу оговорюсь, что делалось оно на заказ, потому имеет своё техзадание. И это первая моя автомобильная поделка на контроллере, так-что сильно не пинайте, но здравая критика приветствуется 🙂

1. Реле должно разомкнуть свои контакты при превышении скорости автомобиля заданную
2. Скорость, при которой реле должно работать, 30 км/ч
Вот, собственно, и все требования, предъявленные заказчиком.

ВАЖНЕЕ НЕКУДА: это реле может быть установлено только на те автомобили, которые позволяют многократные быстрые манипуляции с ключем зажигания. Авто с АКПП, иммобилайзерами, кнопками START-STOP и прочие, имеющие сложную бортовую электронику, как правило, не могут обеспечить режим кратковременного отключения-включения ключа зажигания, который используется для программирования этого реле.

Реле построил на базе ATTiny13A. Скорость узнаем по импульсам с датчика скорости автомобиля.

Приобрел пару реле в ближайшем тазо-маркете. Обычное 5-контактное и реле поворотников. Сравнение на фото ниже. Решил всё-таки втиснуть плату в 5-контактное реле — всё-таки размер поменьше. Альтернативно можно было взять маленькое реле из реле поворотников и поставить на плату в 5-контактное реле, сэкономив море места в корпусе. Но поместилось и так.

Собственно, сабж.

По схеме:
Транзисторы VT1,VT2 любые маломощные с напряжением КЭ не менее 25В. Возможно установить N-канальные MOSFET с такими-же параметрами. Стабилитрон VD3 можно хоть на 5,1В, хоть на 3,6В, в зависимости от того, какой есть в наличии. Я собрал на 3,6В. VT3 на напряжение не менее 25В и ток не ниже 0,3А (можно на ток 0,1А, если поставить малогабаритное реле). Цепь индикации опционально.

Очень важный момент! Конденсатор С4 должен быть емкостью не менее 470мкФ и на напряжением не ниже напряжения стабилизации стабилитрона.

Само реле нужно немного доработать.
Откусываем верхнюю контактную площадку, соединенную с контактом 88. Оставляем небольшой кусок металла от этого контакта в реле, достаточный для подпаивания провода. Это будет вход с датчика скорости.
С правой стороны (если смотреть на реле со стороны контактов) нужно откусить металл, соединяющий контакт 85 со штырьком, на который запаян вывод обмотки реле. На контакт со стороны реле будет припаяна плата — это цепь земли (массы). Штырек обмотки будет припаян к соответствующему участку на плате.
+12В питания берем проводком с контакта 86 на плату. Аналогично с контакта 88 вход датчика.
Пружинящую скобу, поднимающую ярмо магнитопровода, нужно подправить так, чтобы ярмо не поднималось слишком высоко, иначе реле не сработает.
На этом переделка реле закончена.

Сделал плату методом фоторезиста и реши закатать ее под маску из фоторезиста. Шпионская фотка)

Ну и готовая плата

У меня не оказалось под рукой танталового кондера на 470мкФ, потому набрал эту емкость несколькими корпусами и приклеил внутри реле.
И вот что получилось в итоге.

Схема подключения проста как 2 копейки.

Настройка реле

После включения (если Вы запаяли индикацию и у Вас снята крышка реле) дважды мигнет светодиод на плате. Это означает то, что в контроллер не записаны настройки скорости. Разгоняемся до требуемой скорости и кратковременно (не больше, чем на полсекунды) отключаем зажигание и сразу включаем. Светодиод на плате включается и светит постоянно, реле подтянуто. Всё, реле запомнило текущую скорость.
Отключаем зажигание, ждем пару секунд и снова включаем. Светодиод на плате один раз мигнет (если записанная скорость не нулевая, иначе после одной вспышки последует три коротких). Теперь реле будет подтянуто на скоростях ниже заданной и размыкать контакты при превышении заданного порога.

Если потребуется сменить уставку скорости, делается это очень легко.
Включаем зажигание, трижды кратковременно отключаем его, не забывая вернуть обратно во включенное состояние. Реле размыкает свои контакты и светодиод на плате начинает мигать. Всё, реле «забыло» заданную ранее скорость. После отключения и повторного включения готово к новому программированию.

Диапазон скоростей: 0 — 2040км/ч или от 0,5 имп/сек до 1000.

Если запрограммировать реле на стоящем авто, реле будет подтянуто только если автомобиль остановится и разомкнется, если начать движение (>1 км/ч).

Реле универсально и подойдет на любое авто с электронным датчиком скорости. Заказчику нужно для автоматического отключения полного привода при разгоне до 30 км/ч. Готовых решений не нагуглил, потому разработал самостоятельно. Куда еще его можно применить — подумайте сами. В будущем на его основе будет изготовлено реле ДХО.

Прошивка

Фьюзы все дефолтные.

И видео демонстрация с настройкой.

Классификация реле. Под реле понимают такой электри­ческий аппарат, в котором при плавном изменении управ­ляющего (входного) параметра до определенной заранее заданной величины происходит скачкообразное изменение управляемого (выходного) параметра. Хотя бы один из этих параметров должен быть электрическим.

По области применения реле можно разделить на реле для схем автоматики, для управления и защиты электро­привода и защиты энергосистем. По принципу действия ре­ле делятся на электромагнитные, поляризованные, тепло­вые, индукционные, магнитоэлектрические, полупроводни­ковые и др.

В зависимости от входного параметра реле можно раз­делить на реле тока, напряжения, мощности, частоты и дру­гих величин. Отметим, что реле может реагировать не толь­ко на входной параметр, но и на разность значений (диф­ференциальное реле), изменение знака или скорости изме­нения входного параметра. Иногда реле, имеющее только один входной параметр, должно воздействовать на не­сколько независимых цепей. В этом случае реле воздей­ствует на другое, так называемое промежуточное реле, которое имеет необходимое число управляемых цепей.

Промежуточное реле используется и тогда, когда мощ­ность основного реле недостаточна для воздействия на управляемые цепи.

По принципу воздействия на управляемую цепь реле делятся на контактные и бесконтактные. Выходным параметром бесконтактных реле является резкое изменение сопротивления, включенного в управляемую цепь. Разомк­нутому состоянию контактов контактного реле соответст­вует большое сопротивление управляемой цепи бескон­тактного реле. Это состояние бесконтактного реле называ­ется закрытым. Замкнутому состоянию контактов контактного реле соответствует малое сопротивление в уп­равляемой цепи бесконтактного реле. Такое состояние бес­контактного реле называется открытым.

По способу включения реле разделяются на первичные и вторичные. Первичные реле включаются в управляемую цепь непосредственно, вторичные – через измерительные трансформаторы.

Основные характеристики реле. Рассмотрим характе­ристику управления реле, представляющую собой зависи­мость выходного параметра от входного параметра для реле с замы­кающим контактом. У этих реле при отсутствии входного сигнала контакты разомкнуты, и ток в управляемой цепи равен нулю. Для бесконтактных реле сопротивление, введенное в управляемую цепь, достаточно велико, и ток имеет минимальное значение. На рис. 6.1 по оси абсцисс отложено значение входного параметра , а по оси ординат – ­выходного параметра .

Значение входного параметра (напряжения, тока и т.д.), при котором происходит срабатывание реле, называется параметром (напряжением, током и т.д.) срабатывания. До тех пор, пока <, выходной параметр равен нулю либо своему минимальному значению (для бесконтактных аппаратов). При выходной параметр скачком меняется от до .

Происходит срабатывание реле. Если после срабатывания уменьшать значение входного параметра, то при < происходит скачкообразное возвращение вы­ходного параметра от значения до 0 или до , называемое отпу­сканием реле.
Значение входного параметра, при котором происходит скачкообразное отпускание реле, называется параметром отпускания. Значения параметров срабатывания или отпу­скания, на которые отрегулировано реле, называются уставкой по входному параметру.

Время с момента подачи команды на срабатывание до момента начала возрастания выходного параметра назы­вается временем срабатывания. Это время зависит от кон­струкции реле, схемы его включения и входного параметра. Чем больше значение входного параметра по сравне­нию с , тем быстрее срабатывание реле. Отношение / называется коэффициентом запаса. Следует отме­тить, что с ростом коэффициента запаса возрастает вибра­ция контактов электромагнитного реле.

Для ряда реле очень важно отношение/, назы­ваемое коэффициентом возврата.

Время с момента подачи команды на отключение до достижения минимального значения выходного параметра называется временем отключения. Для контактных реле это время состоит из двух интервалов — времени отпу­скания и времени горения дуги.

На рис.6.2 даны зависи­мости входного и выходного параметров электромаг­нитного реле от времени. Входным параметром в данном случае является ток в обмотке реле, выходным — ток в уп­равляемой цепи (цепи нагрузки).

Для рис. 6.2 принято, что включение обмотки реле про­исходит при . При якорь электромагнита реле трогается и начинает движение. В течение времени якорь перемещается, и в конце хода замыкается контакт в цепи нагрузки. Ток нагрузки возрастает от нуля до установившегося значения . Время называ­ют временем срабатывания реле. После этого ток в обмотке реле продолжает расти до установившегося значения . При отключении реле из рабочего состояния ~~раб цепь его обмотки разрывается, и ток в ней спадает. В момент вре­мени , когда усилие противодействующей пружины ста­новится больше электромагнитного усилия, происходит отпускание якоря. Контакты реле разомкнутся после выбора провала контактов через время .

После размыкания контактов загорается дуга, которая по­гаснет через время и ток в нагрузке . Время называется временем отключения.

Важным параметром, характеризующим усилительные свойства реле, является отношение максимальной мощности нагрузки в управляемой цепи к минимальной мощности входного сигнала , при котором происходит срабатыва­ние реле.

Для контактных реле максимальная мощность определяется не длительным током, допустимым для данного контакта, а током нагрузки, который может быть многократно отключен.

Требования, предъявляемые к реле. Требования к реле в значительной мере определяются их назначением. К реле защиты энергосистем предъявляются требования селективности, быстродействия, чувствительности и надеж­ности.

Под селективностью понимается способность реле отключать только поврежденный участок энергосистемы. Достаточно высокое быстродействие позволяет резко снизить последствия аварии, сохранить устойчивость системы при аварийных режимах, обеспечить высокое качество электро­энергии. Минимальное значение входного параметра, при котором реле срабатывает, называется чувствительностью.

Увеличение чувствительности позволяет улучшить качество электротехнических устройств. Так, например, повыше­ние чувствительности релейной защиты позволяет сократить длину линии электропередачи, которая не может быть за­щищена от аварийных режимов.

Реле для защиты энергосистем должны иметь высокую надежность. В противном случае возможно развитие тяже­лых аварий и недоотпуск большого количества электроэнергии.

Реле защиты энергосистемы эксплуатируются, как правило, в облегченных условиях. Они не подвержены воздействию ударов, вибрации, а также пыли и газов, вызывающих коррозию. Из-за того, что аварийные режимы в системе редки, к этим реле не предъявляются высокие требования в части износостойкости.

К реле для схем автоматики, а также для управления и защиты электропривода предъявляются самые разнообразные специфические требования. Эти реле работают в тяжелых условиях эксплуатации: возможны удары, вибрация воздух часто засорен пылью или агрессивными производственными примесями. Так как число включений в час в современных схемах электропривода достигает 1000 – 1200 и более, реле управления должны иметь механическую и электрическую износостойкость до (1-10)·106 циклов. Надежность работы схем автоматики зависит от надежно­сти работы отдельных элементов, в том числе и реле.

Из-за большого количества реле в современных схемах и большого количества выполняемых ими операций к ним предъявляются требования высокой надежности.

Реле развязки – это отличное решение для одновременного заряда нескольких групп аккумуляторов. Его назначение — объединить аккумуляторные батареи, зарядить их от одного источника, а затем изолировать друг от друга после того как устройство зарядки отключено

Реле соединяет аккумуляторы, когда напряжения на одном из них превышает заранее заданный порог и разъединяет, когда напряжение снижается. Однако при совместной работе реле и зарядного устройства существуют некоторые особенности

Зарядное с несколькими выходами

Вид со снятой крышкой зарядного устройства Sterling Power LPCU1230. Выход, обозначенные В1 и В2 позволяют подключить две аккумуляторные батареи и заряжать их одновременно

Современные зарядные устройства часто имеют два или три выхода. Для распределения тока от таких устройств реле развязки не требуется. Однако, если в системе предусмотрена зарядка аккумуляторных батарей от генератора двигателя, развязывающее реле устанавливают. Не возникнет ли в этом случае конфликт между реле и зарядным устройством и не повлияет ли их несогласованная работа на качество зарядки аккумуляторов?

Как правило устройства с несколькими выходами имеют единственный профиль зарядки и переходят к очередному этапу после того как предыдущая стадия завершена для всех подключенных аккумуляторов. Дополнительное соединение с помощью реле в этом случае не вносит практически никаких изменений в систему. Разве что стартовый аккумулятор останется на стадии абсорбции дольше, чем ему требуется в ожидании полной зарядки сервисной батареи. Но если зарядный профиль не слишком агрессивный, большого вреда ему это не причинит.

В дорогих микропроцессорных устройствах иногда устанавливают независимые регуляторы напряжения для каждой группы аккумуляторов и во время зарядки выходы могут подключаться последовательно. Например, сначала в течении определенного периода времени заряжается первая батарея, затем устройство отключает ее и подключает следующую. Каждая группа аккумуляторов при этом имеет собственное напряжение и ток зарядки.

Схема подключения реле развязки. Реле работает в обе стороны. Однако при этой схеме подключит сервисные аккумуляторы для зарядки только когда на нижнем разъеме колодки появится напряжение. Можно использовать оба выхода зарядного устройства без опасений

Предположим, что пользователь установил в таком устройстве различные алгоритмы зарядки для каждого выхода. Первый сконфигурировал для гелевых, второй для обслуживаемых с жидким электролитом, а третий для литиевых. В этом случае реле станет причиной конфликта и уничтожит выгоды от использования сложного зарядного устройства. Алгоритм зарядки, идеально подходящий для одного аккумулятора, станет слишком агрессивным и, следовательно, вредным для другого. Чтобы этого не произошло необходимо отключать реле на время работы зарядного. Существует несколько способов сделать это.

  • Установить переключатель и вручную отключать реле, чтобы оно не соединяло аккумуляторы, когда напряжение на одном из них повышается из-за включения зарядного устройства
  • Создать схему в которой реле развязки аккумуляторов будет отключаться автоматически. Для этого катушку вспомогательного реле подключают к той же цепи переменного тока, что и зарядное устройство, а отрицательную клемму реле развязки к нормально замкнутому контакту вспомогательного реле. Как только зарядное устройство включается, вспомогательное реле размыкает цепь и отключает развязывающее реле. Если зарядное устройство не подключено к сети, а работает другой источник зарядки, например, генератор двигателя, реле развязки будет работать нормально.
  • Использовать реле, включающееся только при наличии контрольного напряжения, например, при повороте ключа зажигания. Такое реле сработает после запуска двигателя и подключит второй аккумулятор для зарядки от генератора, но не объединит АКБ во время работы зарядного устройства
  • Установить цифровое реле развязки. Устройства этого типа можно запрограммировать для срабатывания в одном направлении. Водонепроницаемое реле развязки аккумуляторов Sterling Power VSRB80. Класс защиты IP68. Реле программируется магнитным ключом и позволяет установить зарядку аккумуляторов только в одном направлении, например от генератора. В этом случае при подключении сетевого зарядного устройства реле не сработает

«Шумный» выход зарядного устройства

Схема подключения реле развязки. Источник зарядки подсоединен к сервисному аккумулятору большой емкости. Реле через предохранители подключено к дальним клеммам аккумуляторов, а не к переключателю

Некоторые зарядные устройства заряжают аккумуляторы импульсным током. В режиме импульсов реле трудно точно измерить напряжение. Пики оно воспринимает как недопустимо высокий уровень и разъединяет аккумуляторы или начинает многократно включатся и отключаться. Чтобы этого не происходило в реле встраивают схему фильтрации, сглаживающую выходное напряжение зарядного и уменьшающую пульсирующий эффект.

Проблема смягчается еще больше, если реле подсоединить непосредственно к аккумуляторам, а не к батарейному переключателю с уже подключенными кабелями от генератора и зарядного устройства. Подключение к «дальним клеммам» аккумуляторных батарей также повышает стабильность работы

Реле и поддерживающая зарядка

В некоторых случаях конфликты между реле и зарядным устройством возникают, если последнее находится на этапе поддерживающей зарядки. В режиме Float зарядные снижают напряжение до 13,2-13,7 Вольт. Но слишком низкое напряжение на первом АКБ не даст реле соединить аккумуляторы. И если ко второму в это время подключена нагрузка, то он продолжит разряжаться. Ведь зарядное устройство не контролирует состояние этого аккумулятора из-за разомкнутого реле.

Проблема не возникает, если подключать зарядное устройство к сервисным аккумуляторам. Их емкость больше, и они почти всегда не полностью заряжены.

График изменения напряжения во время зарядки аккумуляторов. На правом графике зарядное сразу переходит к поддерживающей зарядке. Напряжение этой стадии ниже порога срабатывания реле (13,5 Вольт). Однако реле сработает, если это напряжение продержится в течении 120 сек

Нормальный алгоритм работы зарядного устройства показан на рисунке слева. Однако зарядные устройства могут пропускать некоторые этапы и быстро оказываться в режиме с низким напряжением. Кроме того, если зарядное устройство распознает полностью заряженный аккумулятор, то оно может непосредственно перейти в режим Float. Такой алгоритм работы показан на рисунке справа. Уровни напряжения в режиме Float иногда оказываются ниже порога срабатывания большинства реле и аккумуляторы не объединяются для зарядки.

Чтобы не допустить этого в реле устанавливают несколько порогов срабатывания. Например, в нормальном режиме реле объединяет аккумуляторы, если напряжение на одном из них в течении 30 секунд превышает 13,5 вольт. Во втором режиме реле срабатывает, если напряжение 13,0 вольт держится в течении 120 секунд. Второй режим работы позволяет реле распознавать режим поддерживающей зарядки и уменьшает вероятность циклического срабатывания реле, если разница уровней срабатывания и размыкания невелика

Задайте вопрос,

и получите консультацию по электрооборудованию для катера, яхты, автодома или кемпера

Электромагнитное реле представляют из себя изделие радиотехнической промышленности, которое используется для коммутации электрического тока.

Электромагнит

Думаю, все уже в курсе , что поле – это не только гектары земли с пшеницей, картошкой, коноплей 🙂

В нашей жизни существуют еще и другие виды полей, невидимые для человеческого глаза. Это может быть гравитационное, электрическое или даже магнитное поле. Давайте рассмотрим, что же из себя представляет магнитное поле?

Магнитное поле образуется вокруг любого куска магнита. Не зависимо от размеров этого кусочка, этот магнит всегда будет иметь два полюса: северный (N – North) и южный (S – South). Стрелки магнитного поля начинаются с Севера и заканчиваются на Юге, но они нигде не разрываются. Даже в самом магните (доказано наукой). Как вы знаете, Земля – это тот же самый кусочек магнита очень большого размера. Она также имеет эти два полюса, покрытые льдинами. На полюсах Земли, как вы знаете, компас не работает.

Но самый смак заключается в том, что провод, по которому течет электрический ток, вокруг себя образует то же самое магнитное поле как и простой магнит. Буквой I отмечают направление тока, а В – это линии магнитного поля. Они представляют собой замкнутые круги.

Направление линий магнитного поля определяется правилом буравчика

Даже не знаю, кто первый придумал навернуть провод пружиной и пропустить через него электрический ток, но это того стоило.

В результате этого получили нечто иное, как соленоид. Если на концы такого соленоида подать электрический ток, то он будет обладать магнитными свойствами! Правильнее было бы его назвать электромагнит. Смотрите, сколько силовых линий образуется в соленоиде, при подаче на его концы электрического тока!

А если обмотать какую-нибудь железяку этими витками и подать на них напряжение, то эта железяка станет электромагнитом и будет притягивать к себе металлические предметы.

Дело как раз в том, что принцип электромагнита используется в очень важном электротехническом изделии: в электромагнитном реле.

Возьмем простое электромагнитное реле

Давайте же посмотрим, что на нем написано:

TDM ELECTRIC – видимо производитель. РЭК 78/3 – название реле. Дальше идет самое интересное. Мы видим какие то полоски и цифры. Контакты с 1 по 9 – это и есть коммутационные контакты реле, 10 и 11 – это катушка реле.

Теперь обо всем по порядку. Реле состоит из коммутационных контактов. Что значит словосочетание “коммутационные контакты”? Это контакты, которые осуществляют переключение. Катушка – это медный провод, намотанный на цилиндрическую железку. В результате, соленоид превращается в электромагнит, если на его концы подать напряжение.

Еще чуть ниже мы видим такие надписи, как 5А/230 В~ и 5А 24 В=. Это максимальные параметры, которые могут коммутировать контакты реле. Эти параметры желательно не превышать и брать с большим запасом. Иначе при превышении допустимых параметров контакты реле могут обгореть, либо полностью выгореть, что в свою очередь приведет к полному выходу из строя электромагнитного реле.

Когда напряжение на катушку мы НЕ подаем, то контакт 1 соединяется с 7, 2 с 8, 3 с 9

Иными словами, если достать мультиметр, то можно прозвонить контакты 1 и 7, 2 и 8, 3 и 9. Мультиметр должен показать 0 Ом.

Если же мы подаем напряжение на катушку, то группа контактов перебрасывается. В результате соединяется 4 с 7, 5 с 8, 6 с 9.

Какое же напряжение подавать на катушку? На катушке уже есть ответ. Написано 12 VDC. DC – это постоянный ток, АС – переменный. Значит, на катушку подаем 12 Вольт постоянного тока.

С другой стороны мы видим те самые контакты. Слева-направо и сверху-вниз идет нумерация контактов:

Как работает электромагнитное реле

Но как же так оно работает? Все оказывается очень просто. Давайте внимательно рассмотрим фото ниже:

При подаче на катушку напряжения, ярмо притягивается к электромагниту. На ярме находится коммутационный контакт и он движется вслед за ярмом. В результате этого, “пипочка” на коммутационном контакте перебрасывается на нижний контакт и происходит переключение.

При пропадании напряжения на катушке, пружинка оттягивает ярмо назад и реле принимает свой первозданный вид.

Как проверить реле

Давайте же проверим реле с помощью мультиметра и блока питания. Прозваниваем контакт 1 и 7 и смотрим, что у нас они звонятся, значит эти контакты соединены. Видно даже визуально.

Подаем напряжение на катушку 12 Вольт с блока питания и смотрим, что у нас получилось.

В результате у нас ярмо “приклеилось” к электромагниту (катушке) и потянула за собой коммутационный контакт. Цепь 1 и 7 у нас оборвалась, но зато восстановилась цепь контактов 7 и 4. Вот таким образом проверяются контакты реле.

Если контакты с налетом, то следует протереть их карандашным ластиком. Если прилично поджарились, а другого реле под рукой нет, то здесь поможет только шкурка-микронка. Но этот случай уже критический, так как наждачная бумага сдирает тонкий слой из благородного металла, которым покрыты “пипочки”.

Целостность катушки реле проверяется с помощью мультиметра в режиме омметра. Для этого проверяем сопротивление катушки. Оно зависит от самого реле. У всех оно разное. Если сопротивления нет или оно очень маленькое – порядка пару Ом, то значит в катушке либо обрыв, либо короткое замыкание.

На схемах электромагнитные реле обозначаются вот так:

Также контакты обозначают уже просто цифрами. В данном случае:

11 – это общий контакт

11-12 – это нормально замкнутые контакты

11-14 – нормально разомкнутые контакты

Прямоугольником обозначается сама катушка реле, а выводы катушки обозначаются буквами A1 и A2.

При подаче напряжения на катушку в данном реле у нас контакт перекинется, то есть картина будет выглядеть следующим образом:

Без подачи напряжения:

После подачи напряжения:

Плюсы и минусы реле

Плюсы реле

  • Управляемое напряжение и управляющее напряжение никак не связаны между собой. Выражаясь домашним языком – напряжение на катушке никак не связано с напряжением на контактах реле. Они гальванически развязаны, что делает реле безопасным устройством для человека и самой аппаратуры в электро- и радиопромышленности.
  • коммутируемые токи могут достигать сотни ампер у промышленных видов реле (пускатели, контакторы)
  • большой срок службы при правильной эксплуатации. До сих пор на некоторых зарубежных станках ЧПУ стоят реле 70-ых годов, чьи коммутационные контакты выглядят почти как новые.
  • неприхотливость в работе и надежность. Реле до сих пор используются в средствах автоматического управления (САУ), так как они неприхотливы и готовы работать безотказно, хотя уже давненько разработаны твердотельные реле (ТТР), которые опережают простые электромагнитные реле по многим параметрам.

Минусы реле

  • время задержки срабатывания, в течение которого коммутационный контакт “летит” с одного контакта до другого. В очень быстродействующей аппаратуре реле не применяются. Производители обеспечивают электротехническую промышленность различными видами реле и других устройств на их принципе.
  • щелкающий звук при переключении. Кого-то он может раздражать, особенно если реле будет очень часто срабатывать.
  • габариты даже самого маленького электромагнитного реле достаточно много занимают место на печатной плате.

Не знаете, где можно купить нужное вам электромагнитное реле? Вот каталог, где вы найдете подходящее по параметрам реле для своих нужд 😉

Условные графические и буквенные обозначения реле на электрических схемах

Для полноты информации об изделии и особенностях его работы используются электрические схемы. Пользователь не может запутаться при сборке благодаря внесению буквенно-графических маркировок в ЕСКД. Обозначение реле на схеме подчиняется ГОСТ 2.702-2011, где подробно описываются элементы устройства и расшифровываются значения.

Маркировка релейной защиты

Электромагнитное реле постоянного тока

Чтобы обозначить релейную защиту, на чертежах применяются маркеры машин, приборов, аппаратов и самого реле. Все устройства изображают в условиях без напряжения во всех электролиниях. По типу назначения релейного прибора применяются три типа схем.

Принципиальные схемы

Принципиальный чертеж выполняется по отдельным линиям – оперативного тока, тока, напряжения, сигнализации. Реле на нем отрисовываются в расчлененном виде – обмотки находятся на одной части рисунка, а контакты – на другой. Маркировка внутреннего соединения, зажимов, источников оперативного тока на принципиальной схеме отсутствует.

Сложные соединения сопровождаются надписями с указанием функционала отдельных узлов.

Монтажная схема

Пример монтажной схемы

Маркировка устройств защиты производится на рабочих схемах, предназначенных для сборки панелей, управления или автоматики. Все приборы, зажимы, соединения или кабели отражают особенности подключения.

Монтажная схема также называется исполнительной.

Структурные схемы

Позволяют выделить общую структуру релейной защиты. Обозначаться будут уже узлы и типы взаимных связей. Для маркировки органов и узлов применяются прямоугольники с надписями или специальные индексы с разъяснением цели применения конкретного элемента. Структурную схему также дополняются условными знаками логических связей.

Условное обозначение

На электрической схеме реле принято обозначать прямоугольником, от больших сторон которого отходят линии соленоидных выводов питания.

Графические маркеры

Условное обозначение реле на схемах

Графический способ изображения элементов реализуется посредством геометрических фигур:

  • контакты – аналогично контактам переключателей;
  • устройства с контактами около катушки – соединение штриховой линии;
  • контакты в различных местах – порядковый номер рядом с прямоугольником;
  • полярное реле – прямоугольник с двумя выводами и точкой около разъема; Контактная группа реле
  • фиксирование коммутатора при срабатывании – жирная точка у неподвижного контакта;
  • замкнутые контакты реле после того, как снято напряжение – на обозначении замкнутого или разомкнутого контакта рисуют кружок;
  • магнитоуправляемые контакты (геркон) в корпусе – окружность;
  • количество обмоток – наклонные линии;
  • подвижный контакт – стрелочка;
  • однолинейная токопроводящая поверхность – прямая линия с выводами ответвления; Поляризованное реле
  • кольцевая или цилиндрическая токоотводящая поверхность – окружность;
  • перемычки (реле как делитель напряжения) для рассекания сети – линия с символами разъемного соединения;
  • перемычка переключения – П-образная скобка.

Контакты реле могут подписываться.

Буквенное обозначение

УГО реле бывает недостаточно для правильного прочтения схемы. В этом случае используется буквенный способ маркировки. Код реле – английская литера К. Для наглядного понимания, что может обозначать буква на релейной схеме, стоит обратиться к таблице.

Буквы Расшифровка
AK Блок-реле/защитный комплекс
AKZ Комплект реле сопротивления
KA Реле тока
KAT Р. тока с БНТ
KAW Р. тока с торможением
KAZ Токовое реле с функциями фильтра
KB Р. блокировки
KF Р. частоты
KH Указательное
KL Промежуточное
F Плавкий предохранитель
XN Неразборное соединение
XT Разборное соединение
KQC Реле «вкл»
KQT Реле «откл»
KT Р. времени
KSG Тепловое
KV Р. напряжения
K 2.1, K 2.2, K 2.3 Контактные группы
XT Клеммы
E Элементы, к которым подключается реле
NO Нормально разомкнутые контакты
NC Нормально замкнутые контакты
COM Общие (переключающиеся) контакты
mW Мощность потребления
mV Чувствительность
Ω Сопротивление обмотки
V Номинал напряжения
mA Номинальный ток

Буквы можно использовать на графической схеме.

Обозначения в зависимости от типов реле

В зависимости от вида релейные устройства могут обозначаться на схемах по-разному.

Тепловые модели реле

Реле тепловой защиты применяются с целью обеспечения нормального режима работы потребителей. Приборы выключают электродвигатель мгновенно или через некоторое время, предотвращая повреждения изоляционной поверхности или отдельных узлов.

На схемах тепловое реле обозначается как KSG и подключается на нормально-замкнутый контакт. Подключение производится по системе ТР – на выход низковольтного пускателя электродвигателя.

Обозначение реле времени

Реле времени обозначается как KT и работает по принципу постановки на паузу при определенном воздействии. Прибор также может иметь цикличную активность.

Для обозначения контактов, работающих на замыкание согласно ГОСТ 2.755-87 применяются:

  • дуга вниз – задержка после подачи напряжения;
  • дуга вниз – контакт, срабатывающий при возврате;
  • две дуги в противоположном направлении – задержка при подаче и снятии напряжения управления.

Импульсные замыкающие контакты обозначаются так:

  • черточка внизу с диагональной угловой линией и стрелка без нижней части – импульсное замыкание при срабатывании;
  • черточка внизу с диагональной угловой линией и стрелкой без верхней части – импульсное замыкание при возврате;
  • черточка внизу с диагональной угловой линией и нормальной стрелкой – импульсное замыкание в момент срабатывания и возврата.

Напряжение питания, подающееся на реле времени, на схемах маркируется как голубой график. Направление напряжения на приборы обозначается как серый график. Диапазон задержки срабатывания имеет обозначение в виде красных стрелок. Временной интервал отражает буква Т.

Реле тока

Реле тока на схеме

Токовое реле контролирует ток и напряжение. Увеличение первого параметра свидетельствует о неполадках оборудования или линии.

На схемах устройство маркируется как KA (первая буква – общая для реле, пускателя, контактора, вторая – конкретно для токовой модели). При наличии БНТ оно будет обозначаться KAT, торможения – KAW, фильтрации – KAZ. Катушку на чертежах изображают как прямоугольник, размер которого 12х6 мм. Контакты имеют обозначение нормально открытых или нормально закрытых.

Обмотка напряжения маркируется как прямоугольник, разделенный на две части горизонтально. В меньшей указывается буква U, от большей вверх и вниз направлены по горизонтали ровные черточки.

Обмотка тока указывается как прямоугольник, разделенный на два сектора в горизонтальном направлении. В большей по горизонтали вверху и внизу имеются две черточки. На меньшей прописывается буква I со значком больше (максимальный ток).

Особенности обозначения электромагнитных реле на схемах

Конструктивно электромагнитное реле является электромагнитом с одной или несколькими контактными группами. Их символы и формируют УГО прибора. Обмотка электромагнита отрисовывается как прямоугольник с линиями выводов по обеим сторонам. Маркеры контактов К находятся напротив узкой стороны обмотки и соединяются пунктиром (механическая связь).

Контактный вывод можно изобразить с одной стороны, а контакты – около УГО коммутации. Привязку контактов к конкретному реле указывают в виде порядковой нумерации (К 1.1., К 1.2).

Внутри прямоугольника могут указываться параметры или особенности конструкции. К примеру, в символе К 4 имеются две наклонные черточки, т.е. у реле – две обмотки.

Модификации с магнитоуправляемыми контактами в герметичном корпусе для отличия от стандартных приборов обозначают окружностью. Это символ геркона. Принадлежность элемента к определенному устройству прописываются в виде букв контактов (К) и порядковых чисел (5.1, 5.2).

Геркон, управляемый магнитом постоянного типа и не входящий в конструкцию релейной защиты, имеет кодировку автовыключателя – SF.

Промежуточное реле

Промежуточное реле на схеме

Промежуточные релейные устройства применяются для коммутации электроцепи. Они усиливают электрический сигнал, распределяют электроэнергию, сопрягают радиотехнические элементы. Условный знак катушки – прямоугольник с литерой К и порядковым номером на чертеже.

Обозначение контактов промежуточного реле на схеме выполняется при помощи буквы, но с двумя цифрами, которые разделены точкой. Первая свидетельствует о порядковом номере релейного прибора, вторая – о номере группы контактов данного прибора. Контакты, находящиеся около катушки, соединяются штриховкой.

Маркировка электросхемы и выводов производится изготовителем. Она наносится на крышку, закрывающую рабочие органы. Под схемой прописываются контактные параметры – максимальный ток коммутации. Некоторые бренды номеруют выводы со сторон соединения.

На схемах контакты изображаются в состоянии без подачи напряжения.

Виды и обозначения релейных контактов

Обозначения релейных контактов

В зависимости от конструкции реле существует три типа контактов:

  • Нормально-разомкнутые. Размыкаются до подачи тока через катушку реле. Буквенное обозначение – НР или NO.
  • Нормально-замкнутые. Находятся в замкнутом положении до момента протекания тока через релейную катушку. Обозначаются буквами НЗ или NC.
  • Перекидные/переключающиеся/общие. Представляют собой комбинацию из контактов нормально-разомкнутого или нормально-замкнутого типа. Оснащаются общим приводом переключения. Буквенная символика – COM.

На сегодняшний день распространены реле с перекидными контактами.

Досконально изучать особенности маркировки не обязательно. Буквенно-графические символы можно выписать или распечатать, а затем использовать для сборки. Если геометрические фигуры покажутся сложными, всегда можно обратиться к буквенной маркировке.

>Электромагнитное реле

Устройство, обозначение и параметры реле

Для управления различными исполнительными устройствами, коммутации цепей, управления приборами в электронике активно применяется электромагнитное реле.

Устройство реле достаточно просто. Его основой является катушка, состоящая из большого количества витков изолированного провода.

Внутрь катушки устанавливается стержень из мягкого железа. В результате получается электромагнит. Также в конструкции реле присутствует якорь.Он закреплён на пружинящем контакте. Сам же пружинящий контакт закреплён на ярме. Вместе со стержнем и якорем ярмо образует магнитопровод.

Если катушку подключить к источнику тока, то образовавшееся магнитное поле намагничивает сердечник. Он в свою очередь притягивает якорь. Якорь укреплён на пружинящем контакте. Далее пружинящий контакт замыкается с другим неподвижным контактом. В зависимости от конструкции реле, якорь может по-разному механически управлять контактами.

Устройство реле.

В большинстве случаев реле монтируется в защитном корпусе. Он может быть как металлическим, так и пластмассовым. Рассмотрим устройство реле более наглядно, на примере импортного электромагнитного реле Bestar. Взглянем на то, что внутри этого реле.

Вот реле без защитного корпуса. Как видим, реле имеет катушку, стержень, пружинящий контакт, на котором закреплен якорь, а также исполнительные контакты.

На принципиальных схемах электромагнитное реле обозначается следующим образом.

Условное обозначение реле на схеме состоит как бы из двух частей. Одна часть (К1) – это условное обозначение электромагнитной катушки. Она обозначается в виде прямоугольника с двумя выводами. Вторая часть (К1.1; К1.2) – это группы контактов, которыми управляет реле. В зависимости от своей сложности реле может иметь достаточно большое количество коммутируемых контактов. Они разбиваются на группы. Как видим, на обозначении изображены две группы контактов (К1.1 и К1.2).

Как работает реле?

Принцип работы реле наглядно иллюстрирует следующая схема. Есть управляющая цепь. Это само электромагнитное реле K1, выключатель SA1 и батарея питания G1. Также есть исполнительная цепь, которым управляет реле. Исполнительная цепь состоит из нагрузки HL1 (лампа сигнальная), контактов реле K1.1 и батареи питания G2. Нагрузкой может быть, например, электрическая лампа или электродвигатель. В данном случае в качестве нагрузки используется сигнальная лампа HL1.

Как только мы замкнём управляющую цепь выключателем SA1, ток от батареи питания G1 поступит на реле K1. Реле сработает, и его контакты K1.1 замкнут исполнительную цепь. На нагрузку поступит напряжение питания от батареи G2 и лампа HL1 засветится. Если разомкнуть цепь выключателем SA1, то с реле K1 будет снято напряжение питания и контакты реле K1.1 вновь разомкнуться и лампа HL1 выключится.

Коммутируемые контакты реле могут иметь своё конструктивное исполнение. Так, например, различают нормально-разомкнутые контакты, нормально-замкнутые контакты и контакты на переключение (перекидные). Разберёмся с этим поподробнее.

Нормально разомкнутые контакты

Нормально разомкнутые контакты – это контакты реле, которые находятся в разомкнутом состоянии до тех пор, пока через катушку реле не потечёт ток. Говоря проще, когда реле выключено, контакты тоже разомкнуты. На схемах реле с нормально-разомкнутыми контактами обозначается вот так.

Нормально замкнутые контакты

Нормально замкнутые контакты – это контакты реле, находящиеся в замкнутом состоянии, пока через катушку реле не начнёт течь ток. Таким образом, получается, что при выключенном реле контакты замкнуты. Такие контакты на схемах изображают следующим образом.

Переключающиеся контакты

Переключающиеся контакты – это комбинация из нормально-замкнутых и нормально-разомкнутых контактов. У переключающихся контактов есть общий провод, который переключается с одного контакта на другой.

Современные широко распространённые реле, как правило, имеют переключающиеся контакты, но могут встречаться и реле, которые имеют в своём составе только нормально-разомкнутые контакты.

У импортных реле нормально-разомкнутые контакты реле обозначаются сокращением N.O. А нормально-замкнутые контакты N.C. Общий контакт реле имеет сокращение COM. (от слова common – «общий»).

Теперь обратимся к параметрам электромагнитных реле.

Параметры электромагнитных реле.

Как правило, размеры самих реле позволяют наносить на корпус их основные параметры. В качестве примера, рассмотрим импортное реле Bestar BS-115C. На его корпусе нанесены следующие надписи.

COIL 12VDC – это номинальное напряжение срабатывания реле (12V). Поскольку это реле постоянного тока, то указано сокращённое обозначение постоянного напряжения (сокращение DC обозначает постоянный ток/напряжение). Английское слово COIL переводится как «катушка», «соленоид». Оно указывает на то, что сокращение 12VDC имеет отношение к катушке реле.

Далее на реле указаны электрические параметры его контактов. Понятно, что мощность контактов реле может быть разная. Это зависит как от габаритных размеров контактов, так и от используемых материалов. При подключении нагрузки к контактам реле нужно знать мощность, на которую они рассчитаны. Если нагрузка потребляет мощность больше той, на которую рассчитаны контакты реле, то они будут нагреваться, искрить, «залипать». Естественно, это приведёт к скорому выходу из строя контактов реле.

Для реле, как правило, указываются параметры переменного и постоянного тока, которые способны выдержать контакты.

Так, например, контакты реле Bestar BS-115C способны коммутировать переменный ток в 12А и напряжение 120V. Эти параметры зашифрованы в надписи 12А 120VAC (сокращение AC обозначает переменный ток).

Также реле способно коммутировать постоянный ток силой 10А и напряжением 28V. Об этом свидетельствует надпись 10A 28VDC. Это были силовые характеристики реле, точнее его контактов.

Потребляемая мощность реле.

Теперь обратимся к мощности, которую потребляет реле. Как известно, мощность постоянного тока равна произведению напряжения (U) на ток (I): P=U*I. Возьмём значения номинального напряжения срабатывания (12V) и потребляемого тока (30 mA) реле Bestar BS-115C и получим его потребляемую мощность (англ. — Power consumption).

Таким образом, мощность реле Bestar BS-115C составляет 360 милливатт (mW).

Есть ещё один параметр – это чувствительность реле. По своей сути, это и есть мощность потребления реле во включённом состоянии. Понятно, что реле, которому требуется меньше мощности для срабатывания, является более чувствительным по сравнению с теми, которые потребляют большую мощность. Такой параметр, как чувствительность реле, особенно важен для устройств с автономным питанием, так как включенное реле расходует заряд батарей. К примеру, есть два реле с потребляемой мощностью 200 mW и 360 mW. Таким образом, реле мощностью 200 mW обладает большей чувствительностью, чем реле мощностью 360 mW.

Как проверить реле?

Электромагнитное реле можно проверить обычным мультиметром в режиме омметра. Так как обмотка катушки реле обладает активным сопротивлением, то его можно легко измерить. Сопротивление обмотки реле может варьироваться от нескольких десятков ом (Ω), до нескольких килоом (kΩ). Обычно самое низкое сопротивление обмотки имеют миниатюрные реле, которые рассчитаны на номинальное напряжение 3 вольта. У реле, номинальное напряжение которых составляет 48 вольт, сопротивление обмотки намного выше. Это прекрасно видно по таблице, в которой указаны параметры реле серии Bestar BS-115C.

Номинальное напряжение (V, постоянное) Сопротивление обмотки (Ω ±10%) Номинальный ток (mA) Потребляемая мощность (mW)
3 25 120 360
5 70 72
6 100 60
9 225 40
12 400 30
24 1600 15
48 6400 7,5

Отметим, что потребляемая мощность всех типов реле этой серии одинакова и составляет 360 mW.

Электромагнитное реле является электромеханическим прибором. Это, наверное, является самым большим плюсом и в то же время весомым минусом.

При интенсивной эксплуатации любые механические части изнашиваются и приходят в негодность. Кроме этого, контакты мощных реле должны выдерживать огромные токи. Поэтому их покрывают сплавами драгоценных металлов, таких как платина (Pt), серебро (Ag) и золото (Au). Из-за этого качественные реле стоят довольно дорого. Если ваше реле всё-таки вышло из строя, то замену ему можно .

К положительным качествам электромагнитных реле можно отнести устойчивость к ложным срабатываниям и электростатическим разрядам.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

  • Симистор.

  • Параметры МДП-транзисторов.

admin

Поadmin

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *